Skip to main content
Log in

Reduction of circulating and selective limbic brain levels of (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP) following forced swim stress in C57BL/6J mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, and GABAergic neuroactive steroids contribute to homeostatic regulation of this circuitry. Acute forced swim stress (FSS) increases plasma, cortical, and hypothalamic (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP) levels in rats. However, there have not been systemic investigations of acute stress on changes in plasma and brain levels of 3α,5α-THP in mouse models.

Objectives

The present experiments aimed to assess circulating and local brain levels of 3α,5α-THP following acute FSS in C57BL/6J mice.

Methods

Mice were exposed to FSS (10 min), and 50 min later, blood and brains were collected. Circulating pregnenolone and 3α,5α-THP levels were assessed in serum. Free-floating brain sections (40 μm, four to five sections/region) were immunostained and analyzed in cortical and limbic brain structures.

Results

FSS decreased circulating 3α,5α-THP (−41.6 ± 10.4 %) and reduced 3α,5α-THP immunolabeling in the paraventricular nucleus of the hypothalamus (−15.2 ± 5.7 %), lateral amygdala (LA, −31.1 ± 13.4 %), and nucleus accumbens (NAcc) shell (−31.9 ± 14.6). Within the LA, vesicular glutamate transporter 1 (VGLUT1) and vesicular GABA transporter were localized in 3α,5α-THP-positively stained cells, while in the NAcc shell, only VGLUT1 was localized in 3α,5α-THP-positively stained cells, suggesting that both glutamatergic and GABAergic cells within the LA are 3α,5α-THP-positive, while in the NAcc shell, 3α,5α-THP only localizes to glutamatergic cells.

Conclusions

The decrease in circulating and brain levels of 3α,5α-THP may be due to alterations in the biosynthesis/metabolism or changes in the regulation of the HPA axis following FSS. Changes in GABAergic neuroactive steroids in response to stress likely mediate functional adaptations in neuronal activity. This may provide a potential targeted therapeutic avenue to address maladaptive stress responsivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

3α,5α-THP:

(3α,5α)-3-Hydroxy-pregnan-20-one

3α,5α-THDOC:

(3α,5α)-3,21-Dihydroxypregnan-20-one

3α,5β-THP:

(3α,5β)-3-Hydroxy-pregnan-20-one

5α-DHP:

5α-Dehydroxyprogesterone

3α-HSD:

3α-Hydroxysteroid dehydrogenase

BLA:

Basolateral amygdala

BNST:

Bed nucleus of the stria terminalis

CeA:

Central nucleus of the amygdala

CA1:

Cornu ammonis 1

CA3:

Cornu ammonis 3

CRF:

Corticotropin-releasing factor

DA:

Dopamine

FSS:

Forced swim stress

GC/MS:

Gas chromatography/mass spectrometry

HPA:

Hypothalamic-pituitary-adrenal

IHC:

Immunohistochemistry

LA:

Lateral amygdala

mPFC:

Medial prefrontal cortex

NAcc:

Nucleus accumbens

PVN:

Paraventricular hypothalamic nucleus

PTN:

Paraventricular thalamic nucleus

PBS:

Phosphate-buffered saline

PFA:

Paraformaldehyde

VTA:

Ventral tegmental area

VGLUT1:

Vesicular glutamate transporter 1

VGAT:

Vesicular GABA transporter

References

  • Agis-Balboa RC, Pinna G, Pibiri F, Kadriu B, Costa E, Guidotti A (2007) Down-regulation of neurosteroid biosynthesis in corticolimbic circuits mediates social isolation-induced behavior in mice. Proc Natl Acad Sci U S A 104:18736–18741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Akk G, Shu HJ, Wang C, Steinbach JH, Zorumski CF, Covey DF, Mennerick S (2005) Neurosteroid access to the GABAA receptor. J Neurosci 25:11605–11613

    Article  CAS  PubMed  Google Scholar 

  • Auvinen HE, Romijn JA, Biermasz NR, Pijl H, Havekes LM, Smit JW, Rensen PC, Pereira AM (2012) The effects of high fat diet on the basal activity of the hypothalamus-pituitary-adrenal axis in mice. J Endocrinol 214:191–197

    Article  CAS  PubMed  Google Scholar 

  • Barbaccia ML, Roscetti G, Trabucchi M, Mostallino MC, Concas A, Purdy RH, Biggio G (1996) Time-dependent changes in rat brain neuroactive steroid concentrations and GABAA receptor function after acute stress. Neuroendocrinology 63:166–172

    Article  CAS  PubMed  Google Scholar 

  • Compagnone NA, Mellon SH (2000) Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 21:1–56

    Article  CAS  PubMed  Google Scholar 

  • Cook JB, Dumitru AM, O’Buckley TK, Morrow AL (2014) Ethanol administration produces divergent changes in GABAergic neuroactive steroid immunohistochemistry in the rat brain. Alcohol Clin Exp Res 38:90–99

    Article  CAS  PubMed  Google Scholar 

  • Dong E, Matsumoto K, Uzunova V, Sugaya I, Takahata H, Nomura H, Watanabe H, Costa E, Guidotti A (2001) Brain 5alpha-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation. Proc Natl Acad Sci U S A 98:2849–2854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evans J, Sun Y, McGregor A, Connor B (2012) Allopregnanolone regulates neurogenesis and depressive/anxiety-like behaviour in a social isolation rodent model of chronic stress. Neuropharmacology 63:1315–1326

    Article  CAS  PubMed  Google Scholar 

  • Finn DA, Sinnott RS, Ford MM, Long SL, Tanchuck MA, Phillips TJ (2004) Sex differences in the effect of ethanol injection and consumption on brain allopregnanolone levels in C57BL/6 mice. Neuroscience 123:813–819

    Article  CAS  PubMed  Google Scholar 

  • Franklin K, Paxinos G (2007) The mouse brain in stereotaxic coordinates, 3rd edn. Elsevier, San Diego

    Google Scholar 

  • Gasior MJ, Carter RB, Goldberg SR, Witkin JM (1997) Anticonvulsant and behavioral effects of neuroactive steroids alone and in conjunction with diazepam. J Pharmacol Exp Ther 282:543–553

    CAS  PubMed  Google Scholar 

  • Genazzani AR, Petraglia F, Bernardi F, Casarosa E, Salvestroni C, Tonetti A, Nappi RE, Luisi S, Palumbo M, Purdy RH, Luisi M (1998) Circulating levels of allopregnanolone in humans: gender, age, and endocrine influences. J Clin Endocrinol Metab 83:2099–2103

    Article  CAS  PubMed  Google Scholar 

  • Genazzani AR, Salvestroni C, Guo A-L, Palumbo M, Cela V, Casarisa E, Luisi M, Genazzani AD, Petraglia F (1996) Neurosteroids and regulation of neuroendocrine function. In: Genazzani AR, Petraglia F, Purdy RH (eds) The brain: source and target for sex steroid hormones. Parthenon Publishing Group, New York, pp 83–92

  • Girdler SS, Klatzkin R (2007) Neurosteroids in the context of stress: implications for depressive disorders. Pharmacol Ther 116:125–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grobin AC, VanDoren MJ, Porrino LJ, Morrow AL (2005) Cortical 3α-hydroxy-5α-pregnan-20-one levels after acute administration of Δ9-tetrahydrocannabinol, cocaine and morphine. Psychopharmacology (Berlin) 179:544–550

    Article  CAS  Google Scholar 

  • Guidotti A, Costa E (1998) Can the antidysphoric and anxiolytic profiles of selective serotonin reuptake inhibitors be related to their ability to increase brain 3α,5α-tetrahydroprogesterone (allopregnanolone) availability? Biol. Psychiatry 44:865–873

    CAS  Google Scholar 

  • Gunn BG, Brown AR, Lambert JJ, Belelli D (2011) Neurosteroids and GABA(A) receptor interactions: a focus on stress. Front Neurosci 5:131

    Article  PubMed Central  PubMed  Google Scholar 

  • Gunn BG, Cunningham L, Cooper MA, Corteen NL, Seifi M, Swinny JD, Lambert JJ, Belelli D (2013) Dysfunctional astrocytic and synaptic regulation of hypothalamic glutamatergic transmission in a mouse model of early-life adversity: relevance to neurosteroids and programming of the stress response. J Neurosci Off J Soc Neurosci 33:19534–19554

    CAS  Google Scholar 

  • Herman JP, Mueller NK, Figueiredo H (2004) Role of GABA and glutamate circuitry in hypothalamo-pituitary-adrenocortical stress integration. Ann N Y Acad Sci 1018:35–45

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Ostrander MM, Mueller NK, Figueiredo H (2005) Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 29:1201–1213

    Article  CAS  PubMed  Google Scholar 

  • Hosie AM, Wilkins ME, da Silva HM, Smart TG (2006) Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444:486–489

    Article  CAS  PubMed  Google Scholar 

  • Izumi Y, Svrakic N, O’Dell K, Zorumski CF (2013) Ammonia inhibits long-term potentiation via neurosteroid synthesis in hippocampal pyramidal neurons. Neuroscience 233:166–173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Janis GC, Devaud LL, Mitsuyama H, Morrow AL (1998) Effects of chronic ethanol consumption and withdrawal on the neuroactive steroid 3α-hydroxy-5α-pregnan-20-one in male and female rats. Alcohol Clin Exp Res 22:2055–2061

    CAS  PubMed  Google Scholar 

  • Kokate TG, Banks MK, Magoo T, Yamaguchi S-I, Rogawski MA (1999) Finasteride, a 5α-reductase inhibitor, blocks the anticonvulsant activity of progesterone in mice. J Pharmacol Exp Ther 288:679–684

    CAS  PubMed  Google Scholar 

  • Kokate TG, Yamaguchi S, Pannell LK, Rajamani U, Carroll DM, Grossman AB, Rogawski MA (1998) Lack of anticonvulsant tolerance to the neuroactive steroid pregnanolone in mice. J Pharmacol Exp Ther 287:553–558

    CAS  PubMed  Google Scholar 

  • Kugler J, Lange KW, Kalveram KT (1988) Influence of bleeding order on plasma corticosterone concentration in the mouse. Exp Clin Endocrinol 91:241–243

    Article  CAS  PubMed  Google Scholar 

  • Miklos IH, Kovacs KJ (2012) Reorganization of synaptic inputs to the hypothalamic paraventricular nucleus during chronic psychogenic stress in rats. Biol Psychiatry 71:301–308

    Article  PubMed  Google Scholar 

  • Morrow AL (2007) Recent developments in the significance and therapeutic relevance of neuroactive steroids—introduction to the special issue. Pharmacol Ther 116:1–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morrow AL, Suzdak PD, Paul SM (1987) Steroid hormone metabolites potentiate GABA receptor-mediated chloride ion flux with nanomolar potency. Eur J Pharmacol 142:483–485

    Article  CAS  PubMed  Google Scholar 

  • Owens MJ, Ritchie JC, Nemeroff CB (1992) 5α-Pregnane-3α,21-diol-20-one (THDOC) attenuates mild stress-induced increases in plasma corticosterone via a non-glucocorticoid mechanism: comparison with alprazolam. Brain Res 573:353–355

    CAS  PubMed  Google Scholar 

  • Patchev VK, Shoaib M, Holsboer F, Almeida OFX (1994) The neurosteroid tetrahydroprogesterone counteracts corticotropin-releasing hormone-induced anxiety and alters the release and gene expression of corticotropin-releasing hormone in the rat hypothalamus. Neuroscience 62:265–271

    Article  CAS  PubMed  Google Scholar 

  • Paul SM, Purdy RH (1992) Neuroactive steroids. FASEB J 6:2311–2322

    CAS  PubMed  Google Scholar 

  • Pericic D, Strac DS, Vlainic J (2007) Interaction of diazepam and swim stress. Brain Res 1184:81–87

    CAS  PubMed  Google Scholar 

  • Pericic D, Svob D, Jazvinscak M, Mirkovic K (2000) Anticonvulsive effect of swim stress in mice. Pharmacol Biochem Behav 66:879–886

    Article  CAS  PubMed  Google Scholar 

  • Phan VL, Urani A, Romieu P, Maurice T (2002) Strain differences in sigma(1) receptor-mediated behaviours are related to neurosteroid levels. Eur J Neurosci 15:1523–1534

    Article  PubMed  Google Scholar 

  • Porcu P, Locci A, Santoru F, Beretti R, Morrow AL, Concas A (2014) Failure of acute ethanol administration to alter cerebrocortical and hippocampal allopregnanolone levels in C57BL/6J and DBA/2J mice. Alcohol Clin Exp Res 153:340–350

    Google Scholar 

  • Porcu P, O’Buckley TK, Alward SE, Marx CE, Shampine LJ, Girdler SS, Morrow AL (2009) Simultaneous quantification of GABAergic 3α,5α/3α,5β neuroactive steroids in human and rat serum. Steroids 74:463–473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Porcu P, O’Buckley TK, Alward SE, Song SC, Grant KA, de Wit H, Morrow AL (2010) Differential effects of ethanol on serum GABAergic 3α,5α/3α,5β neuroactive steroids in mice, rats, cynomolgus monkeys and humans. Alcohol Clin Exp Res 34:432–442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Purdy RH, Morrow AL, Moore PH Jr, Paul SM (1991) Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci U S A 88:4553–4557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy DS, Rogawski MA (2002) Stress-induced deoxycorticosterone-derived neurosteroids modulate GABAA receptor function and seizure susceptibility. J Neurosci 22:3795–3805

    CAS  PubMed  Google Scholar 

  • Rouge-Pont F, Mayo W, Marinelli M, Gingras M, Le Moal M, Piazza PV (2002) The neurosteroid allopregnanolone increases dopamine release and dopaminergic response to morphine in the rat nucleus accumbens. Eur J Neurosci 16:169–173

    Article  PubMed  Google Scholar 

  • Sanchez P, Torres JM, Gavete P, Ortega E (2008) Effects of swim stress on mRNA and protein levels of steroid 5alpha-reductase isozymes in prefrontal cortex of adult male rats. Neurochem Int 52:426–431

    Article  CAS  PubMed  Google Scholar 

  • Sarkar J, Wakefield S, MacKenzie G, Moss SJ, Maguire J (2011) Neurosteroidogenesis is required for the physiological response to stress: role of neurosteroid-sensitive GABAA receptors. J Neurosci 31:18198–18210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwartz RD, Wess MJ, Labarca R, Skolnick P, Paul SM (1987) Acute stress enhances the activity of the GABA receptor-gated chloride ion channel in brain. Brain Res 411:151–155

    CAS  PubMed  Google Scholar 

  • Stromberg J, Haage D, Taube M, Backstrom T, Lundgren P (2006) Neurosteroid modulation of allopregnanolone and GABA effect on the GABA-A receptor. Neuroscience 143:73–81

    Article  CAS  PubMed  Google Scholar 

  • Tokuda K, Izumi Y, Zorumski CF (2011) Ethanol enhances neurosteroidogenesis in hippocampal pyramidal neurons by paradoxical NMDA receptor activation. J Neurosci 31:9905–9909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Urani A, Roman FJ, Phan VL, Su TP, Maurice T (2001) The antidepressant-like effect induced by sigma(1)-receptor agonists and neuroactive steroids in mice submitted to the forced swimming test. J Pharmacol Exp Ther 298:1269–1279

    CAS  PubMed  Google Scholar 

  • Vallee M, Rivera JD, Koob GF, Purdy RH, Fitzgerald RL (2000) Quantification of neurosteroids in rat plasma and brain following swim stress and allopregnanolone administration using negative chemical ionization gas chromatography/mass spectrometry. Anal Biochem 287:153–166

    Article  CAS  PubMed  Google Scholar 

  • Vallee M, Vitiello S, Bellocchio L, Hebert-Chatelain E, Monlezun S, Martin-Garcia E, Kasanetz F, Baillie GL, Panin F, Cathala A, Roullot-Lacarriere V, Fabre S, Hurst DP, Lynch DL, Shore DM, Deroche-Gamonet V, Spampinato U, Revest JM, Maldonado R, Reggio PH, Ross RA, Marsicano G, Piazza PV (2014) Pregnenolone can protect the brain from cannabis intoxication. Science 343:94–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • VanDoren MJ, Matthews DB, Janis GC, Grobin AC, Devaud LL, Morrow AL (2000) Neuroactive steroid 3α-hydroxy-5α-pregnan-20-one modulates electrophysiological and behavioral actions of ethanol. J Neurosci 20:1982–1989

    CAS  PubMed  Google Scholar 

  • Ventura R, Cabib S, Puglisi-Allegra S (2001) Opposite genotype-dependent mesocorticolimbic dopamine response to stress. Neuroscience 104:627–631

    Article  CAS  PubMed  Google Scholar 

  • Wilson MA, Biscardi R (1997) Influence of gender and brain region on neurosteroid modulation of GABA responses in rats. Life Sci 60:1679–1691

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the NIAAA INIA UO1-AA020935 (ALM). AMD was supported by UNC Curriculum in Toxicology NIEHS Training Grant T32 ES007126.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Leslie Morrow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maldonado-Devincci, A.M., Beattie, M.C., Morrow, D.H. et al. Reduction of circulating and selective limbic brain levels of (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP) following forced swim stress in C57BL/6J mice. Psychopharmacology 231, 3281–3292 (2014). https://doi.org/10.1007/s00213-014-3552-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3552-z

Keywords

Navigation