, Volume 231, Issue 19, pp 3829–3842 | Cite as

Acute administration of THC impairs spatial but not associative memory function in zebrafish

  • Tim RuhlEmail author
  • Nicole Prinz
  • Nadine Oellers
  • Nathan Ian Seidel
  • Annika Jonas
  • Önder Albayram
  • Andras Bilkei-Gorzo
  • Gerhard von der Emde
Original Investigation



The present study examined the effect of acute administration of endocannabinoid receptor CB1 ligand ∆-9-tetrahydrocannabinol (THC) on intracellular signalling in the brain and retrieval from two different memory systems in the zebrafish (Danio rerio).


First, fish were treated with THC and changes in the phosphorylation level of mitogen-activated protein (MAP) kinases Akt and Erk in the brain were determined 1 h after drug treatment. Next, animals of a second group learned in a two-alternative choice paradigm to discriminate between two colours, whereas a third group solved a spatial cognition task in an open-field maze by use of an ego-allocentric strategy. After memory acquisition and consolidation, animals were pharmacologically treated using the treatment regime as in the first group and then tested again for memory retrieval.


We found an enhanced Erk but not Akt phosphorylation suggesting that THC treatment specifically activated Erk signalling in the zebrafish telencephalon. While CB1 agonist THC did not affect behavioural performance of animals in the colour discrimination paradigm, spatial memory was significantly impaired. The effect of THC on spatial learning is probably specific, since neither motor activity nor anxiety-related behaviour was influenced by the drug treatment. That indicates a striking influence of the endocannabinoid system (ECS) on spatial cognition in zebrafish.


The results are very coincident with reports on mammals, demonstrating that the ECS is functional highly conserved during vertebrate evolution. We further conclude that the zebrafish provides a promising model organism for ongoing research on the ECS.


Learning Memory Fish Endocannabinoid system Telencephalon 



The authors thank Athena Andreosso and Stefan Löwe for assisting during establishment of the behavioural setups. We thank Andreas Zimmer for his generous support of the experimental work and for providing equipment used in the histological experiments. Önder Albayram is a member of the DFG cluster of Excellence ImmunoSensation. Part of this work was financed by grants to Andras Bilkei-Gorzo (FOR926, SP2; German Research Council) and Önder Albayram (BONFOR). The experiments followed the guidelines of the animal welfare laws and were approved by the Animal Care and Use Committee of the state North Rhine-Westphalia, Germany.

Conflict of interest

No potential conflicts of interest, financial or otherwise are declared by the authors.


  1. Arthur D, Levin ED (2001) Spatial and non-spatial visual discrimination learning in zebrafish (Danio rerio). Anim Cogn 4:125–131CrossRefGoogle Scholar
  2. Avdesh A, Chen M, Martin-Iverson MT, Mondal A, Verdile G, Martins RN (2010) Natural colour preference in the zebrafish (Danio rerio). In: Spink AJ, Grieco F, Krips OE, Loijens LWS, Noldus LPJ, Zimmerman PH (eds) Proceedings of measuring behavior. Noldus, Eindhoven, pp 155–157Google Scholar
  3. Avdesh A, Martin-Iverson MT, Mondal A, Chen M, Askraba S, Morgan N, Lardelli M, Groth DM, Verdile G, Martins RN (2012) Evaluation of colour preference in zebrafish for learning and memory. J Alzheimers Dis 28:459–469PubMedGoogle Scholar
  4. Bambico FF, Duranti A, Tontini A, Tarzia G, Gobbi G (2009) Endocannabinoids in the treatment of mood disorders: evidence from animal models. Curr Pharm Des 15:1–24CrossRefGoogle Scholar
  5. Barba-Escobedo PA, Gould GG (2012) Visual social preference of lone zebrafish in a novel environment: strain and anxiolytic effects. Genes Brain Behav 11:366–373PubMedCrossRefPubMedCentralGoogle Scholar
  6. Braida D, Limonta V, Pegorini S, Zani A, Guerini-Rocco C, Gori E, Sala M (2007) Hallucinatory and rewarding effect of salvinorin A in zebrafish: k-opioid and CB1-cannabinoid receptor involvement. Psychopharmacology 190:441–448PubMedCrossRefGoogle Scholar
  7. Branson K, Robie AA, Bender J, Perona P, Dickinson MH (2009) High-throughput ethomics in large groups of Drosophila. Nat Meth 6:451–457CrossRefGoogle Scholar
  8. Broglio C, Gomez A, Duran E, Ocana FM, Jimenez-Moya F, Rodriguez F, Salas C (2005) Hallmarks of a common forebrain vertebrate plan: specialized pallial areas for spatial, temporal and emotional memory in actinopterygian fish. Brain Res Bull 66:277–281PubMedCrossRefGoogle Scholar
  9. Broglio C, Rodriguez F, Gomez A, Arias JL, Salas C (2010) Selective involvement of the goldfish lateral pallium in spatial memory. Behav Brain Res 210:191–201PubMedCrossRefGoogle Scholar
  10. Cannich A, Wotkjak CT, Kamprath K, Lutz B, Marsicano G (2004) CB1 cannabinoid receptors modulate kinase and phosphatase activity during extinction of conditioned fear in mice. Learn Mem 11:625–632PubMedCrossRefPubMedCentralGoogle Scholar
  11. Colwill RM, Raymond MP, Ferreira L, Escudero H (2005) Visual discrimination learning in zebrafish (Danio rerio). Behav Proc 70:19–31CrossRefGoogle Scholar
  12. Cottone E, Guastalla A, Mackie K, Franzoni MF (2008) Endocannabinoids affect the reproductive functions in teleosts and amphibians. Mol Cell Endocrin 286S:41–45CrossRefGoogle Scholar
  13. De Fonseca FR, Del Arco I, Bermudez-Silva FJ, Bilbao A, Cippitelli A, Navarro M (2005) The endocannabinoid system: physiology and pharmacology. Alcohol Alcoholism 40:2–14CrossRefGoogle Scholar
  14. De Petrocellis L, Cascio MG, Di Marzo V (2004) The endocannabinoid system: a general view and latest additions. Br J Pharm 141:765–774CrossRefGoogle Scholar
  15. De Petrocellis L, Bifulco M, Ligresti A, Di Marzo V (2005) Potential use of cannabimimetics in the treatment of cancer. In: Mechoulan R (ed) Cannabinoids as therapeutics. Birkhäuser, Basel, pp 165–183CrossRefGoogle Scholar
  16. Doldan MJ, Prego B, Holmqvist BI, de Miguel E (1999) Distribution of GABA-immunolabeling in the early zebrafish (Danio rerio) brain. Eur J Morphol 37:126–129PubMedCrossRefGoogle Scholar
  17. Dunlop R, Millsopp S, Laming P (2006) Avoidance learning in goldfish (Carassius auratus) and trout (Oncorhynchus mykiss) and implications for pain perception. App Anim Behav Sci 97:255–271CrossRefGoogle Scholar
  18. Duran E, Vargas JP, Salas C, Papini MR (2000) Effect of telencephalic ablation on appetitive instrumental learning in the goldfish (Carassius auratus). Psicothema 12:520–524Google Scholar
  19. Duran E, Ocana FM, Gomez A, Jimenez-Moya F, Broglio C, Rodriguez F, Salas C (2008) Telencephalon ablation impairs goldfish allocentric spatial learning in a “hole-board” task. Acta Neurobiol Exp 68:519–525Google Scholar
  20. Duran E, Ocana FM, Broglio C, Rodriguez F, Salas C (2010) Lateral but not medial telencephalic pallium ablation impairs the use of goldfish spatial allocentric strategies in a “hole-board” task. Behav Brain Res 214:480–487PubMedCrossRefGoogle Scholar
  21. Egashira N, Mishima K, Iwasaki K, Fujiwara M (2002) Intracerebral microinjections of delta 9-tetrahydrocannabinol: search for the impairment of spatial memory in the eight-arm radial maze in rats. Brain Res 952:239–245PubMedCrossRefGoogle Scholar
  22. Facciolo RM, Crudo M, Zizza M, Giusi G, Canonaco M (2011) Feeding behaviors and ORXR–β-GABAAR subunit interactions in Carassius auratus. Neurotoxicol Teratol 33:641–650PubMedCrossRefGoogle Scholar
  23. Facciolo RM, Crudo M, Zizza M, Giusi G, Canonaco M (2012) α-GABAA subunit-orexin receptor interactions activate learning/motivational pathways in the goldfish. Behav Brain Res 234:349–356PubMedCrossRefGoogle Scholar
  24. Freund TM, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83:1017–1066PubMedGoogle Scholar
  25. Gellermann LW (1933) Chance orders of alternating stimuli in visual discrimination experiments. J Genet Psychol 42:206–208Google Scholar
  26. Grossman L, Stewart A, Gaikwad S, Utterback E, Wu N, DiLeo J, Frank K, Hart P, Howard H, Kalueff AV (2011) Effects of piracetam on behavior and memory in adult zebrafish. Brain Res Bull 85:58–63PubMedCrossRefGoogle Scholar
  27. Guzman M (2003) Cannabinoids: potential anticancer agents. Nat Rev 3:745–755CrossRefGoogle Scholar
  28. Haller J, Mátyás F, Soproni K, Varga B, Barsy B, Németh B, Mikics E, Freund TF, Hájos N (2007) Correlated species differences in the effects of cannabinoid ligands on anxiety and on GABAergic and glutamatergic synaptic transmission. Eur J Neurosci 25:2445–2456PubMedCrossRefPubMedCentralGoogle Scholar
  29. Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC (1990) Cannabinoid receptor localization in brain. PNAS 87:1932–1936PubMedCrossRefPubMedCentralGoogle Scholar
  30. Herkenham M, Lynn AB, Johnson MR, Melvin LS, Costa BR, Rise KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583PubMedGoogle Scholar
  31. Iwasaki K, Matsumoto Y, Fujiwara M (1992) Effect of nebracetam on the disruption of spatial cognition in rats. Jpn J Pharmacol 58:117–126PubMedCrossRefGoogle Scholar
  32. Jentsch JD, Andrusiak E, Tran A, Bowers MB, Roth RH (1997) ∆9-Tetrahydrocannabinol increases prefrontal cortical catecholaminergic utilization and impairs spatial working memory in the rat: blockade of dopaminergic effects with HA966. Neuropsychopharmacology 16:426–432PubMedCrossRefGoogle Scholar
  33. Katona I, Freund TF (2008) Endocannabinoid signaling as a presynaptic circuit breaker in neurological diseases. Nat Med 14:923–930PubMedCrossRefGoogle Scholar
  34. Kim YJ, Nam RH, Yoo YM, Lee CJ (2004) Identification and functional evidence of GABAergic neurons in parts of the brain of adult zebrafish (Danio rerio). Neurosci Lett 355:29–32PubMedCrossRefGoogle Scholar
  35. Köfalvi A, Rodrigues RJ, Ledent C, Mackie K, Vizi ES, Cunha RA, Sperlágh B (2005) Involvement of cannabinoid receptors in the regulation of neurotransmitter release in the rodent striatum: a combined immunochemical and pharmacological analysis. J Neurosci 25:2874–2884PubMedCrossRefGoogle Scholar
  36. Lam CS, Rastegar S, Strähle U (2006) Distribution of cannabinoid receptor 1 in the CNS of zebrafish. Neuroscience 138:83–95PubMedCrossRefGoogle Scholar
  37. Lau BYB, Mathur P, Gould GG, Guo S (2011) Identification of a brain center whose activity discriminates a choice behavior in zebrafish. PNAS 108:2581–2586PubMedCrossRefPubMedCentralGoogle Scholar
  38. Li L, Dowling JE (1997) A dominant form of inherited retinal degeneration caused by a non-photoreceptor cell-specific mutation. PNAS 94:11645–11650PubMedCrossRefPubMedCentralGoogle Scholar
  39. Lichtman AH, Dimen KR, Martin BR (1995) Systemic or intrahippocampal cannabinoid administration impairs spatial memory in rats. Psychopharmacology 119:282–290PubMedCrossRefGoogle Scholar
  40. Lichtman AH, Martin BR (1996) ∆9-Tetrahydrcannabinol impairs spatial memory through a cannabinoid receptor mechanism. Psychopharmacology 126:125–131PubMedCrossRefGoogle Scholar
  41. Lopez JC, Broglio C, Rodriguez F, Thinus-Blanc C, Salas C (2000) Reversal learning deficit in a spatial task but not in a cued one after telencephalic ablation in goldfish. Behav Brain Res 109:91–98PubMedCrossRefGoogle Scholar
  42. Mailleux P, Parmentier M, Vanderhaeghen JJ (1992) Distribution of cannabinoid receptor messenger RNA in the human brain: an in situ hybridization histochemistry with oligonucleotides. Neurosci Lett 143:200–204PubMedCrossRefGoogle Scholar
  43. Marsicano G, Lutz B (1999) Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 11:4213–4225PubMedCrossRefGoogle Scholar
  44. McPartland JM, Matias I, Di Marzo V, Glass M (2006) Evolutionary origins of the endocannabinoid system. Gene 370:64–74PubMedCrossRefGoogle Scholar
  45. Migliarini B, Carnevali O (2008) Anandamide modulates growth and lipid metabolism in the zebrafish Danio rerio. Mol Cell Endocrin 286:12–16CrossRefGoogle Scholar
  46. Migliarini B, Carnevali O (2009) A novel role for the endocannabinoid system during zebrafish development. Mol Cell Endocrin 299:172–177CrossRefGoogle Scholar
  47. Mishima K, Egashira N, Hirosaw N, Fujii M, Matsumoto Y, Iwasaki K, Fujiwara M (2001) Characteristics of learning and memory impairment induced by Δ9-tetrahydrocannabinol in rats. Jpn J Pharmacol 97:297–308CrossRefGoogle Scholar
  48. Monory K, Blaudzun H, Massa F, Kaiser N, Lemberger T, Schütz G, Wotjak CT, Lutz B, Marsicano G (2007) Genetic dissection of behavioural and autonomic effects of ∆9-tetrahydrocannabinol in mice. PLoS Biol 5:e269PubMedCrossRefPubMedCentralGoogle Scholar
  49. Ng MC, Tang TH, Ko MC, Wu YJ, Hsu CP, Yang YL, Lu KT (2012) Stimulation of the lateral division of the dorsal telencephalon induces synaptic plasticity in the medial division of adult zebrafish. Neurosci Lett 512:109–113PubMedCrossRefGoogle Scholar
  50. Northcutt RG (2006) Connections of the lateral and medial divisions of the goldfish telencephalic pallium. J Comp Neurol 494:903–943PubMedCrossRefGoogle Scholar
  51. Odling-Smee L, Braithwaite VA (2003) The role of learning in fish orientation. Fish Fish 4:235–246CrossRefGoogle Scholar
  52. Ohnishi K (1989) Telencephalic function implicated in food-reinforced color discrimination learning in the goldfish. Phys Behav 46:707–712CrossRefGoogle Scholar
  53. Pamplona FA, Takahashi RN (2006) WIN 55212-2 impairs contextual fear conditioning through the activation of CB1 cannabinoid receptors. Neurosci Lett 397:88–92PubMedCrossRefGoogle Scholar
  54. Pertwee RG (2005) Cannabidiol as a potential medicine. In: Mechoulan R (ed) Cannabinoids as therapeutics. Birkhäuser, Basel, pp 47–67CrossRefGoogle Scholar
  55. Portavella M, Torres B, Salas C (2004a) Avoidance response in goldfish: emotional and temporal involvement of medial and lateral telencephalic pallium. J Neurosci 24:2335–2342PubMedCrossRefGoogle Scholar
  56. Portavella M, Torres B, Salas C, Papini MR (2004b) Lesions of the medial pallium, but not the lateral pallium, disrupt spaced-trial avoidance learning in goldfish (Carassius auratus). Neurosci Lett 362:75–78PubMedCrossRefGoogle Scholar
  57. Portavella M, Vargas JP (2005) Emotional and spatial learning in goldfish is dependent on different telencephalic pallial systems. Eur J Neurosci 21:2800–2806PubMedCrossRefGoogle Scholar
  58. Rodriguez F, Duran E, Vargas JP, Torres B, Salas C (1994) Performance of goldfish trained in allocentric and egocentric maze procedures suggests the presence of a cognitive mapping system in fishes. Anim Learn Behav 22:409–420CrossRefGoogle Scholar
  59. Rodriguez F, Lopez JC, Vargas JP, Gomez Y, Broglio C, Salas C (2002a) Conservation of spatial memory function in the pallial forebrain of reptiles and ray-finned fishes. J Neurosci 22:2894–2903PubMedGoogle Scholar
  60. Rodriguez F, Lopez JC, Vargas JP, Broglio C, Gomez Y, Salas C (2002b) Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish. Brain Res Bull 57:499–503PubMedCrossRefGoogle Scholar
  61. Salas C, Rodriguez F, Vargas JP, Duran E, Torres B (1996) Spatial learning and memory deficits after telencephalic ablation in goldfish trained in place and turn maze procedures. Behav Neurosci 110:965–980PubMedCrossRefGoogle Scholar
  62. Sales-Carbonell C, Rueda-Orozco PE, Soria-Gómez E, Buzsáki G, Marsicano G, Robbe D (2013) Striatal GABAergic and cortical glutamatergic neurons mediate contrasting effects of cannabinoids on cortical network synchrony. PNAS 110:719–724PubMedCrossRefPubMedCentralGoogle Scholar
  63. Saito K, Watanabe S (2005) Experimental analysis of spatial learning in goldfish. Psychol Rec 55:647–662Google Scholar
  64. Soderstrom K, Leid M, Moore FL, Murray TF (2000) Behavioral, pharmacological, and molecular characterization of an amphibian cannabinoid receptor. J Neurochem 75:413–423PubMedCrossRefGoogle Scholar
  65. Spence R, Smith C (2008) Innate and learned colour preference in the zebrafish, Danio rerio. Ethology 114:582–588CrossRefGoogle Scholar
  66. Szabo B, Dörner L, Pfreundtner C, Nörenberg W, Starke K (1998) Inhibition of GABAergic inhibitory postsynaptic currents by cannabinoids in rat corpus striatum. Neurosciences 85:395–403CrossRefGoogle Scholar
  67. Umathe SN, Manna SS, Utturwar KS, Jain NS (2009) Endocannabinoids mediate anxiolytic-like effect of acetaminophen via CB1 receptors. Prog Neuropsychopharmacol Biol Psychiatry 33:1191–1199PubMedCrossRefGoogle Scholar
  68. Valenti M, Cottone E, Martinez R, De Pedro N, Rubio M, Viveros MP, Frantoni MF, Delgado MJ, Di Marzo V (2005) The endocannabinoid system in the brain of Carassius auratus and its possible role in the control of food intake. J Neurochem 95:662–672PubMedCrossRefGoogle Scholar
  69. Valjent E, Pagès C, Rogard M, Besson MJ, Maldonado R, Caboche J (2001) delta9-Tetrahydrcannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission. Eur J Neurosci 14:342–352PubMedCrossRefGoogle Scholar
  70. Van der Stelt M, Di Marzo V (2003) The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders. Eur J Pharm 480:133–150CrossRefGoogle Scholar
  71. Vargas JP, Rodriguez F, Lopez JC, Arias JL, Salas C (2000) Spatial learning-induced increase in the argyrophilic nucleolar organizer region of dorsolateral telencephalic neurons in goldfish. Brain Res 865:77–84PubMedCrossRefGoogle Scholar
  72. Varvel SA, Hamm RJ, Martin BR, Lichtman AH (2001) Differential effects of ∆9-THC on spatial reference and working memory in mice. Psychopharmacology 157:142–150PubMedCrossRefGoogle Scholar
  73. Warburton K (1990) The use of local landmarks by foraging goldfish. Anim Behav 40:500–505CrossRefGoogle Scholar
  74. Wegener N, Koch M (2009) Behavioral disturbances and altered Fos protein expression in adult rats after chronic pubertal cannabinoid treatment. Brain Res 1253:81–91PubMedCrossRefGoogle Scholar
  75. Williams FE, White D, Messer WS (2002) A simple spatial alternation task for assessing memory function in zebrafish. Behav Proc 58:125–132CrossRefGoogle Scholar
  76. Wise LE, Thorpe AJ, Lichtman AH (2009) Hippocampal CB1 receptors mediate the memory impairing effects of delta-tetrahydrocannabinol. Neuropsychopharmacology 34:2072–2080PubMedCrossRefPubMedCentralGoogle Scholar
  77. Wullimann M, Müller T (2004) Teleostean and mammalian forebrains contrasted: evidence from genes to behavior. J Comp Neurol 475:143–162PubMedCrossRefGoogle Scholar
  78. Xu X, Scott-Scheiern T, Kempker L, Simons K (2007) Active avoidance conditioning in zebrafish (Danio rerio). Neurobiol Learn Mem 87:72–77PubMedCrossRefGoogle Scholar
  79. Zanettini C, Panlilio LV, Alicki M, Goldberg SR, Haller J, Yasar S (2011) Effects of endocannabinoid system modulation on cognitive and emotional behavior. Front Behav Neurosci 5:1–21CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tim Ruhl
    • 1
    Email author
  • Nicole Prinz
    • 1
  • Nadine Oellers
    • 1
  • Nathan Ian Seidel
    • 1
  • Annika Jonas
    • 2
  • Önder Albayram
    • 2
  • Andras Bilkei-Gorzo
    • 2
  • Gerhard von der Emde
    • 1
  1. 1.Department for Neuroethology and Sensory Ecology, Institute of ZoologyUniversity of BonnBonnGermany
  2. 2.Institute of Molecular PsychiatryUniversity of BonnBonnGermany

Personalised recommendations