Abstract
Rationale
Phosphodiesterases (PDEs) are a super family of enzymes responsible for the halting of intracellular cyclic nucleotide signaling and may represent novel therapeutic targets for treatment of cognitive disorders. PDE4 is of considerable interest to cognitive research because it is highly expressed in the brain, particularly in the cognition-related brain regions. Recently, the functional role of PDE4B and PDE4D, two of the four PDE4 subtypes (PDE4A, B, C, and D), in behavior has begun to be identified; however, the role of PDE4A in the regulation of behavior is still unknown.
Objectives
The purpose of this study was to characterize the functional role of PDE4A in behavior.
Methods
The role of PDE4A in behavior was evaluated through a battery of behavioral tests using PDE4A knockout (KO) mice; urine corticosterone levels were also measured.
Results
PDE4A KO mice exhibited improved memory in the step-through-passive-avoidance test. They also displayed anxiogenic-like behavior in elevated-plus maze, holeboard, light–dark transition, and novelty suppressed feeding tests. Consistent with the anxiety profile, PDE4A KO mice had elevated corticosterone levels compared with wild-type controls post-stress. Interestingly, PDE4A KO mice displayed no change in object recognition, Morris water maze, forced swim, tail suspension, and duration of anesthesia induced by co-administration of xylazine and ketamine (suggesting that PDE4A KO may not be emetic).
Conclusions
These results suggest that PDE4A may be important in the regulation of emotional memory and anxiety-like behavior, but not emesis. PDE4A could possibly represent a novel therapeutic target in the future for anxiety or disorders affecting memory.
Similar content being viewed by others
References
Adamec R, Hebert M, Blundell J (2011) Long lasting effects of predator stress on pCREB expression in brain regions involved in fearful and anxious behavior. Behav Brain Res 221:118–133. doi:10.1016/j.bbr.2011.03.008
Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89:121–145. doi:10.1152/physrev.00017.2008
Ariga M, Neitzert B, Nakae S et al (2004) Nonredundant function of phosphodiesterases 4D and 4B in neutrophil recruitment to the site of inflammation. J Immunol 173:7531–7538
Arnsten AFT (2009) Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci 10:410–422. doi:10.1038/nrn2648.Stress
Arnsten AFT (2011) Prefrontal cortical network connections: key site of vulnerability in stress and schizophrenia. Int J Dev Neurosci 29:215–223. doi:10.1016/j.ijdevneu.2011.02.006
Arnsten AFT, Jin LE (2012) Guanfacine for the treatment of cognitive disorders: a century of discoveries at Yale. Yale J Biol Med 85:45–58
Arnsten AFT, Ramos BP, Birnbaum SG, Taylor JR (2005) Protein kinase A as a therapeutic target for memory disorders: rationale and challenges. Trends Mol Med 11:121–128. doi:10.1016/j.molmed.2005.01.006
Arnsten AFT, Paspalas CD, Gamo NJ et al (2010) Dynamic network connectivity: a new form of neuroplasticity. Trends Cogn Sci 14:365–375. doi:10.1016/j.tics.2010.05.003
Bandelow B, Boerner JR, Kasper S et al (2013) The diagnosis and treatment of generalized anxiety disorder. Dtsch Arztebl Int 110:300–310. doi:10.3238/arztebl.2013.0300
Bi L-L, Wang J, Luo Z-Y et al (2013) Enhanced excitability in the infralimbic cortex produces anxiety-like behaviors. Neuropharmacology 72:148–156. doi:10.1016/j.neuropharm.2013.04.048
Bolger G, Michaeli T, Martins T et al (1993) A family of human phosphodiesterases homologous to the dunce learning and memory gene product of Drosophila melanogaster are potential targets for antidepressant drugs. Mol Cell Biol 13:6558–6571
Bolger GB, Mcphee I, Houslay MD (1996) Alternative splicing of cAMP-specific phosphodiesterase mRNA transcripts, characterization of a novel tissue-specific isoform. J Biol Chem 271:1065–1071
Bolger GB, Erdogan S, Jones RE et al (1997) Characterization of five different mRNAs from the human cAMP-specific phosphodiesterase PDE4D gene. Biochem J 328:539–548
Bolger GB, Peden AH, Steele MR et al (2003) Attenuation of the activity of the cAMP-specific phosphodiesterase PDE4A5 by interaction with the immunophilin XAP2. J Biol Chem 278:33351–33363. doi:10.1074/jbc.M303269200
Bruno O, Fedele E, Prickaerts J et al (2011) GEBR-7b, a novel PDE4D selective inhibitor that improves memory in rodents at non-emetic doses. Br J Pharmacol 164:2054–2063. doi:10.1111/j.1476-5381.2011.01524.x
Bruss MD, Richter W, Horner K et al (2008) Critical role of PDE4D in beta2-adrenoceptor-dependent cAMP signaling in mouse embryonic fibroblasts. J Biol Chem 283:22430–22442. doi:10.1074/jbc.M803306200
Burgin AB, Magnusson OT, Singh J et al (2010) Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nat Biotechnol 28:63–70. doi:10.1038/nbt.1598
Carlezon W a, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445. doi:10.1016/j.tins.2005.06.005
Celikyurt IK, Ulak G, Mutlu O et al (2012) Positive impact of levetiracetam on emotional learning and memory in naive mice. Life Sci 90:185–189. doi:10.1016/j.lfs.2011.11.003
Chandrasekaran A, Toh KY, Low SH et al (2008) Identification and characterization of novel mouse PDE4D isoforms: molecular cloning, subcellular distribution and detection of isoform-specific intracellular localization signals. Cell Signal 20:139–153. doi:10.1016/j.cellsig.2007.10.003
Cherry JA, Davis RL (1999) Cyclic AMP phosphodiesterases are localized in regions of the mouse brain associated with reinforcement, movement, and affect. J Comp Neurol 301:287–301
Cherry J a, Pho V (2002) Characterization of cAMP degradation by phosphodiesterases in the accessory olfactory system. Chem Senses 27:643–652
Conti M, Richter W, Mehats C et al (2003) Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem 278:5493–5496. doi:10.1074/jbc.R200029200
Correa-Sales C, Rabin BC, Maze M (1992) A hypnotic response to dexmedetomidine, an alpha 2 agonist, is mediated in the locus coeruleus in rats. Anesthesiology 76:948–952
D’Sa C, Eisch AJ, Bolger GB, Duman RS (2005) Differential expression and regulation of the cAMP-selective phosphodiesterase type 4A splice variants in rat brain by chronic antidepressant administration. Eur J Neurosci 22:1463–1475. doi:10.1111/j.1460-9568.2005.04321.x
Dyke HJ, Montana JG (2002) Update on the therapeutic potential of PDE4 inhibitors. Expert Opin Investig Drugs 11:1–13. doi:10.1517/13543784.11.1.1
Finkbeiner S, Tavazoie SF, Maloratsky A et al (1997) CREB: a major mediator of neuronal neurotrophin responses. Neuron 19:1031–1047
Gamo NJ, Arnsten AFT (2011) Molecular modulation of prefrontal cortex: rational development of treatments for psychiatric disorders. Behav Neurosci 125:282–296. doi:10.1037/a0023165
Garcia R, Vouimba RM, Baudry M, Thompson RF (1999) The amygdala modulates prefrontal cortex activity relative to conditioned fear. Nature 402:294–296. doi:10.1038/46286
Greenberg P, Sisitsky T, Kessler R et al (1999) The economic burden of anxiety disorders in the 1990s. J Clin Psychiatry 60:427–435
Hansen RT, Zhang H-T (2013) Senescent-induced dysregulation of cAMP/CREB signaling and correlations with cognitive decline. Brain Res 1516:93–109. doi:10.1016/j.brainres.2013.04.033
Hiester BG, Galati DF, Salinas PC, Jones KR (2013) Neurotrophin and Wnt signaling cooperatively regulate dendritic spine formation. Mol Cell Neurosci 56C:115–127. doi:10.1016/j.mcn.2013.04.006
Holmes A, Wellman CL (2009) Stress-induced prefrontal reorganization and executive dysfunction in rodents. Neurosci Biobehav Rev 33:773–783. doi:10.1016/j.neubiorev.2008.11.005
Houslay MD (2010) Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. Trends Biochem Sci 35:91–100. doi:10.1016/j.tibs.2009.09.007
Houslay MD, Adams DR (2003) PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J 370:1–18. doi:10.1042/BJ20021698
Hu W, Lu T, Chen A et al (2011) Inhibition of phosphodiesterase-4 decreases ethanol intake in mice. Psychopharmacology (Berl). doi:10.1007/s00213-011-2290-8
Huston E, Lumb S, Russell a et al (1997) Molecular cloning and transient expression in COS7 cells of a novel human PDE4B cAMP-specific phosphodiesterase, HSPDE4B3. Biochem J 328(Pt 2):549–558
Jin S-LC, Conti M (2002) Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-alpha responses. Proc Natl Acad Sci U S A 99:7628–7633. doi:10.1073/pnas.122041599
Jin S-LC, Richard F, Kuo W-P et al (1999) Impaired growth and fertility of cAMP-specific phosphodiesterase PDE4D-deficient mice. Proc Natl Acad Sci U S A 96:11998–12003
Jin S-LC, Lan L, Zoudilova M, Conti M (2005) Specific role of phosphodiesterase 4B in lipopolysaccharide-induced signaling in mouse macrophages. J Immunol 175:1523–1531
Jin S-LC, Goya S, Nakae S et al (2010) Phosphodiesterase 4B is essential for T(H)2-cell function and development of airway hyperresponsiveness in allergic asthma. J Allergy Clin Immunol 126:1252–1259. doi:10.1016/j.jaci.2010.08.014, e12
Johansson EM, Reyes-Irisarri E, Mengod G (2012) Comparison of cAMP-specific phosphodiesterase mRNAs distribution in mouse and rat brain. Neurosci Lett 525:1–6. doi:10.1016/j.neulet.2012.07.050
Kaneko M, Xie Y, An JJ et al (2012) Dendritic BDNF synthesis is required for late-phase spine maturation and recovery of cortical responses following sensory deprivation. J Neurosci 32:4790–4802. doi:10.1523/JNEUROSCI.4462-11.2012
Korte SM (2001) Corticosteroids in relation to fear, anxiety and psychopathology. Neurosci Biobehav Rev 25:117–142
Kurien BT, Scofield RH (1999) Mouse urine collection using clear plastic wrap. Lab Anim 33:83–86. doi:10.1258/002367799780578525
Lakics V, Karran EH, Boess FG (2010) Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology 59:367–374. doi:10.1016/j.neuropharm.2010.05.004
Lakshminarasimhan H, Chattarji S (2012) Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala. PLoS One 7:e30481. doi:10.1371/journal.pone.0030481
Lamontagne S, Meadows E, Luk P et al (2001) Localization of phosphodiesterase-4 isoforms in the medulla and nodose ganglion of the squirrel monkey. Brain Res 920:84–96
Li Y-F, Huang Y, Amsdell SL et al (2009) Antidepressant- and anxiolytic-like effects of the phosphodiesterase-4 inhibitor rolipram on behavior depend on cyclic AMP response element binding protein-mediated neurogenesis in the hippocampus. Neuropsychopharmacology 34:2404–2419. doi:10.1038/npp.2009.66
Li Y-F, Cheng Y-F, Huang Y et al (2011) Phosphodiesterase-4D knock-out and RNA interference-mediated knock-down enhance memory and increase hippocampal neurogenesis via increased cAMP signaling. J Neurosci 31:172–183. doi:10.1523/JNEUROSCI.5236-10.2011
Lueptow LM, O’Donnell JM (2011) Differential-reinforcement-of-low-rate behavior in rodents as a screen for antidepressant efficacy. 63:287–305. doi: 10.1007/978-1-61779-313-4
McGaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 27:1–28. doi:10.1146/annurev.neuro.27.070203.144157
McPhee I, Pooley L, Lobban M et al (1995) Identification, characterization and regional distribution in brain of RPDE-6 (RNPDE4A5), a novel splice variant of the PDE4A cyclic AMP phosphodiesterase family. Biochem J 310(Pt 3):965–974
McPhee I, Cochran S, Houslay MD (2001) The novel long PDE4A10 cyclic AMP phosphodiesterase shows a pattern of expression within brain that is distinct from the long PDE4A5 and short PDE4A1 isoforms. Cell Signal 13:911–918
Menniti FS, Faraci WS, Schmidt CJ (2006) Phosphodiesterases in the CNS: targets for drug development. Nat Rev Drug Discov 5:660–670. doi:10.1038/nrd2058
Mori F, Pérez-Torres S, De Caro R et al (2010) The human area postrema and other nuclei related to the emetic reflex express cAMP phosphodiesterases 4B and 4D. J Chem Neuroanat 40:36–42. doi:10.1016/j.jchemneu.2010.03.004
Mulchahey JJ, Regmi a, Sheriff S et al (1999) Coordinate and divergent regulation of corticotropin-releasing factor (CRF) and CRF-binding protein expression in an immortalized amygdalar neuronal cell line. Endocrinology 140:251–259
O’Callaghan JP, Sriram K (2004) Focused microwave irradiation of the brain preserves in vivo protein phosphorylation: comparison with other methods of sacrifice and analysis of multiple phosphoproteins. J Neurosci Methods 135:159–168. doi:10.1016/j.jneumeth.2003.12.006
O’Donnell JM, Xu Y (2012) Evidence for global reduction in brain cyclic adenosine monophosphate signaling in depression. Biol Psychiatry 72:524–525. doi:10.1016/j.biopsych.2012.07.017
O’Donnell JM, Zhang H-T (2004) Antidepressant effects of inhibitors of cAMP phosphodiesterase (PDE4). Trends Pharmacol Sci 25:158–163. doi:10.1016/j.tips.2004.01.003
Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100:309–327. doi:10.1161/01.RES.0000256354.95791.f1
Orefice LL, Waterhouse EG, Partridge JG et al (2013) Distinct roles for somatically and dendritically synthesized brain-derived neurotrophic factor in morphogenesis of dendritic spines. J Neurosci 33:11618–11632. doi:10.1523/JNEUROSCI.0012-13.2013
Pinner N a, Hamilton L a, Hughes A (2012) Roflumilast: a phosphodiesterase-4 inhibitor for the treatment of severe chronic obstructive pulmonary disease. Clin Ther 34:56–66. doi:10.1016/j.clinthera.2011.12.008
Radley JJ, Sisti HM, Hao J et al (2004) Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125:1–6. doi:10.1016/j.neuroscience.2004.01.006
Radley JJ, Arias CM, Sawchenko PE (2006a) Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. J Neurosci 26:12967–12976. doi:10.1523/JNEUROSCI.4297-06.2006
Radley JJ, Rocher AB, Miller M et al (2006b) Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex 16:313–320. doi:10.1093/cercor/bhi104
Ramos A (2008) Animal models of anxiety: do I need multiple tests? Trends Pharmacol Sci 29:493–498. doi:10.1016/j.tips.2008.07.005
Ramos BP, Stark D, Verduzco L et al (2006) α2A-adrenoceptor stimulation improves prefrontal cortical regulation of behavior through inhibition of cAMP signaling in aging animals. Learn Mem 13:770–776. doi:10.1101/lm.298006.Thus
Rena G, Begg F, Ross a et al (2001) Molecular cloning, genomic positioning, promoter identification, and characterization of the novel cyclic amp-specific phosphodiesterase PDE4A10. Mol Pharmacol 59:996–1011
Richter W, Unciuleac L, Hermsdorf T et al (2001) Identification of substrate specificity determinants in human cAMP-specific phosphodiesterase 4A by single-point mutagenesis. Cell Signal 13:159–167
Richter W, Jin S-LC, Conti M (2005) Splice variants of the cyclic nucleotide phosphodiesterase PDE4D are differentially expressed and regulated in rat tissue. Biochem J 388:803–811. doi:10.1042/BJ20050030
Richter W, Menniti F, Zhang H, Conti M (2013) PDE4 as a target for cognition enhancement. Expert Opin Ther Targets 17:1011–1027
Robichaud A, Savoie C, Stamatiou PB et al (2001) PDE4 inhibitors induce emesis in ferrets via a noradrenergic pathway. Neuropharmacology 40:262–269
Robichaud A, Savoie C, Stamatiou PB et al (2002a) Assessing the emetic potential of PDE4 inhibitors in rats. Br J Pharmacol 135:113–118. doi:10.1038/sj.bjp.0704457
Robichaud A, Stamatiou PB, Jin S-LC et al (2002b) Deletion of phosphodiesterase 4D in mice shortens alpha(2)-adrenoceptor-mediated anesthesia, a behavioral correlate of emesis. J Clin Invest 110:1045–1052. doi:10.1172/JCI15506
Roozendaal B, McEwen BS, Chattarji S (2009) Stress, memory and the amygdala. Nat Rev Neurosci 10:423–433. doi:10.1038/nrn2651
Russo SJ, Murrough JW, Han M-H et al (2012) Neurobiology of resilience. Nat Neurosci 15:1475–1484. doi:10.1038/nn.3234
Rutten K, Misner DL, Works M et al (2008) Enhanced long-term potentiation and impaired learning in phosphodiesterase 4D-knockout (PDE4D) mice. Eur J Neurosci 28:625–632. doi:10.1111/j.1460-9568.2008.06349.x
Shackman AJ, Sarinopoulos I, Maxwell JS et al (2006) Anxiety selectively disrupts visuospatial working memory. Emotion 6:40–61. doi:10.1037/1528-3542.6.1.40
Shaywitz AJ, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861
Shepherd M, McSorley T, Olsen AE et al (2003) Molecular cloning and subcellular distribution of the novel PDE4B4 cAMP-specific phosphodiesterase isoform. Biochem J 370:429–438. doi:10.1042/BJ20021082
Sheriff S, Dautzenberg FM, Mulchahey JJ et al (2001) Interaction of neuropeptide Y and corticotropin-releasing factor signaling pathways in AR-5 amygdalar cells. Peptides 22:2083–2089
Smith WB, McCaslin IR, Gokce a et al (2013) PDE5 inhibitors: considerations for preference and long-term adherence. Int J Clin Pract 67:768–780. doi:10.1111/ijcp.12074
Steimer T (2011) Animal models of anxiety disorders in rats and mice: come conceptual issues. Dialogues Clin Neurosci 13:495–506
Sullivan M, Rena G, Begg F et al (1998) Identification and characterization of the human homologue of the short PDE4A cAMP-specific phosphodiesterase RD1 (PDE4A1) by analysis of the human HSPDE4A gene locus located at chromosome 19p13.2. Biochem J 333:693–703
Tavares RF, Corrêa FMA, Resstel LBM (2009) Opposite role of infralimbic and prelimbic cortex in the tachycardiac response evoked by acute restraint stress in rats. J Neurosci Res 87:2601–2607. doi:10.1002/jnr.22070
Vasconcellos a PS, Tabajara a S, Ferrari C et al (2003) Effect of chronic stress on spatial memory in rats is attenuated by lithium treatment. Physiol Behav 79:143–149. doi:10.1016/S0031-9384(03)00113-6
Vecsey CG, Baillie GS, Jaganath D et al (2009) Sleep deprivation impairs cAMP signaling in the hippocampus. Nature 461:1122–1125. doi:10.1038/nature08488.Sleep
Vigers a J, Amin DS, Talley-Farnham T et al (2012) Sustained expression of brain-derived neurotrophic factor is required for maintenance of dendritic spines and normal behavior. Neuroscience 212:1–18. doi:10.1016/j.neuroscience.2012.03.031
Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22:6810–6818
Wallace TL, Stellitano KE, Neve RL, Duman RS (2004) Effects of cyclic adenosine monophosphate response element binding protein overexpression in the basolateral amygdala on behavioral models of depression and anxiety. Biol Psychiatry 56:151–160. doi:10.1016/j.biopsych.2004.04.010
Wang P, Myers JG, Wu P et al (1997) Expression, purification, and characterization of human subtypes A, B, C, and D. Biochem Biophys Res Commun 234:320–324
Wang Z, Zhang Y, Liu Y et al (2013) RNA interference-mediated phosphodiesterase 4D splice variants knock-down in the prefrontal cortex produces antidepressant-like and cognition-enhancing effects. Title. Br J Pharmacol 168:1004–1014
Winters BD, Saksida LM, Bussey TJ (2008) Object recognition memory: neurobiological mechanisms of encoding, consolidation and retrieval. Neurosci Biobehav Rev 32:1055–1070. doi:10.1016/j.neubiorev.2008.04.004
Yen Y-C, Mauch CP, Dahlhoff M et al (2012) Increased levels of conditioned fear and avoidance behavior coincide with changes in phosphorylation of the protein kinase B (AKT) within the amygdala in a mouse model of extremes in trait anxiety. Neurobiol Learn Mem 98:56–65. doi:10.1016/j.nlm.2012.04.009
Zhang H-T (2009) Cyclic AMP-specific phosphodiesterase-4 as a target for the development of antidepressant drugs. Curr Pharm Des 15:1688–1698
Zhang H-T, Huang Y, Jin S-L et al (2002) Antidepressant-like profile and reduced sensitivity to rolipram in mice deficient in the PDE4D phosphodiesterase enzyme. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 27:587–595. doi:10.1016/S0893-133X(02)00344-5
Zhang HT, Zhao Y, Huang Y et al (2006) Antidepressant-like effects of PDE4 inhibitors mediated by the high-affinity rolipram binding state (HARBS) of the phosphodiesterase-4 enzyme (PDE4) in rats. Psychopharmacology 186:209–217
Zhang H-T, Huang Y, Masood A et al (2008) Anxiogenic-like behavioral phenotype of mice deficient in phosphodiesterase 4B (PDE4B). Neuropsychopharmacology 33:1611–1623. doi:10.1038/sj.npp.1301537
Acknowledgements
This work was supported by research grants from the NARSAD Young Investigator Award [1008640 for 2006, and 10011226 for 2008 to H.T. Zhang], and the National Institute on Aging [AG031687 to H.T. Zhang]. We would like to thank Dr. James O’Donnell for his guidance and use of laboratory materials necessary for this research to be performed; Dr. James O’Callaghan for the assistance and use of his microwave fixation machine; Dr. Rae Matsumoto for the use of her PAS automated open field chambers; and Dr. Max Sokolov for the use of his Licor Odyssey Infrared Imaging Scanner.
Conflicts of interest
Han-Ting Zhang is the scientific consultant of Asubio Pharmaceuticals and Takeda Pharmaceuticals; he has received financial support for his research from Lundbeck Pharmaceuticals. None of the companies sold any drugs or devices mentioned in the article. The other authors have no financial interests to disclose.
Support and potential conflict
This work was supported by research grants from the NARSAD Young Investigator Award [1008640 for 2006 and 10011226 for 2008 to H.T. Zhang] and the National Institute on Aging [AG031687 to H.T. Zhang]. Han-Ting Zhang is the scientific consultant of Asubio Pharmaceuticals and Takeda Pharmaceuticals; he has received financial support for his research from Lundbeck Pharmaceuticals. None of the companies sold any drugs or devices mentioned in the article. The other authors have no financial interests to disclose.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hansen, R.T., Conti, M. & Zhang, HT. Mice deficient in phosphodiesterase-4A display anxiogenic-like behavior. Psychopharmacology 231, 2941–2954 (2014). https://doi.org/10.1007/s00213-014-3480-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00213-014-3480-y