Skip to main content

Advertisement

Log in

Involvement of nucleus accumbens AMPA receptor trafficking in augmentation of D- amphetamine reward in food-restricted rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Chronic food restriction (FR) increases behavioral responsiveness to drugs of abuse and associated environments. Pre- and postsynaptic neuroadaptations have been identified in the mesoaccumbens dopamine pathway of FR subjects but the mechanistic basis of increased drug reward magnitude remains unclear.

Objectives

Effects of FR on basal and d-amphetamine-induced trafficking of AMPA receptor subunits to the nucleus accumbens (NAc) postsynaptic density (PSD) were examined, and AMPA receptor involvement in augmentation of d-amphetamine reward was tested.

Materials and methods

FR and ad libitum fed (AL) rats were injected with d-amphetamine (2.5 mg/kg, i.p.) or vehicle. Brains were harvested and subcellular fractionation and Western analyses were used to assess AMPA receptor abundance in NAc homogenate and PSD fractions. A follow-up experiment used a curve-shift protocol of intracranial self-stimulation to assess the effect of 1-naphthylacetyl spermine (1-NASPM), a blocker of Ca2+-permeable AMPA receptors, on rewarding effects of d-amphetamine microinjected in NAc shell.

Results

FR increased GluA1 in the PSD, and d-amphetamine increased p-Ser845-GluA1, GluA1, GluA2, but not GluA3, with a greater effect in FR than AL rats. d-amphetamine lowered reward thresholds, with greater effects in FR than AL rats, and 1-NASPM selectively reversed the enhancing effect of FR.

Conclusions

Results suggest that FR leads to increased synaptic incorporation of GluA1 homomers to potentiate rewarding effects of appetitive stimuli and, as a maladaptive byproduct, d-amphetamine. The d-amphetamine-induced increase in synaptic p-Ser845-GluA1, GluA1, and GluA2 may contribute to the rewarding effect of d-amphetamine, but may also be a mechanism of synaptic strengthening and behavior modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Austin SB, Gortmaker SL (2001) Dieting and smoking initiation in early adolescent girls and boys: a prospective study. Am J Public Health 91:446–450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Avena NM, Rada P, Hoebel BG (2008) Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 32:20–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barry MR, Ziff EB (2002) Receptor trafficking and the plasticity of excitatory synapses. Curr Opin Neurobiol 12:279–286

    Article  CAS  PubMed  Google Scholar 

  • Bell SM, Stewart RB, Thompson SC, Meisch RA (1997) Food-deprivation increases cocaine-induced conditioned place preference and locomotor activity in rats. Psychopharmacology 131:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bernard V, Somogyi P, Bolam JP (1997) Cellular, subcellular, and subsynaptic distribution of AMPA-type glutamate receptor subunits in the neostriatum of the rat. J Neurosci 17:819–833

    CAS  PubMed  Google Scholar 

  • Boehm J, Kang M-G, Johnson RC, Esteban J, Rl H, Malinow R (2006) Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron 51:213–225

    Article  CAS  PubMed  Google Scholar 

  • Boudreau AC, Wolf ME (2005) Behavioral sensitization to cocaine associated with increased AMPA receptor surface expression in the nucleus accumbens. J Neurosci 25:9144–9151

    Article  CAS  PubMed  Google Scholar 

  • Cabeza de Vaca S, Carr KD (1998) Food restriction enhances the central rewarding effect of abused drugs. J Neurosci 18:7502–7510

    CAS  PubMed  Google Scholar 

  • Cabeza de Vaca S, Krahne L, Carr KD (2004) A progressive ratio schedule of self- stimulation testing reveals profound augmentation of d-amphetamine reward by food restriction but no effect of a "sensitizing" regimen of d-amphetamine. Psychopharmacology 175:106–113

    Article  CAS  PubMed  Google Scholar 

  • Cardinal RN, Everitt BJ (2004) Neural and psychological mechanisms underlying appetitive learning: links to drug addiction. Curr Opin Neurobiol 14:156–162

    Article  CAS  PubMed  Google Scholar 

  • Carr KD (2011) Food scarcity, neuroadaptations, and the pathogenic potential of dieting in an unnatural ecology: compulsive eating and drug abuse. Physiol Behav 104:162–167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carr KD, Tsimberg Y, Berman Y, Yamamoto N (2003) Evidence of increased dopamine receptor signaling in food-restricted rats. Neuroscience 119:1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Carr KD, Cabeza de Vaca S, Sun Y, Chau LS (2009) Reward-potentiating effects of D-1 dopamine receptor agonist and AMPA GluR1 antagonist in nucleus accumbens shell are increased by food restriction; possible relevance to enhancement of adaptive and maladaptive reward-directed behavior. Psychopharmacology 202:731–743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carr KD, Chau LS, de Vaca C, Gustafson K, Stouffer M, Tukey DS, Restituito S, Ziff EB (2010) AMPA receptor subunit GluR1 downstream of D-1 dopamine receptor stimulation in nucleus accumbens shell mediates increased drug reward magnitude in food-restricted rats. Neuroscience 165:1074–1086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carroll ME, Meisch RA (1984) Increased drug-reinforced behavior due to food deprivation. Adv Behav Pharmacol 4:47–88

    Article  CAS  Google Scholar 

  • Chao SZ, Ariano MA, Peterson DA, Wolf ME (2002) D1 dopamine receptor stimulation increases GluR1 surface expression in nucleus accumbens neurons. J Neurochem 83:704–712

    Article  CAS  PubMed  Google Scholar 

  • Cheskin LJ, Hess JM, Henningfield J, Gorelick DA (2005) Calorie restriction increases cigarette use in adult smokers. Psychopharmacology 179:430–436

    Article  CAS  PubMed  Google Scholar 

  • Choquet D (2010) Fast AMPAR trafficking for a high-frequency synaptic transmission. Eur J Neurosci 32:250–260

    Article  PubMed  Google Scholar 

  • Conason A, Teixeira J, Hsu CH, Puma L, Knafo D, Geliebter A (2013) Substance use following bariatric weight loss surgery. JAMA Surg 148:145–150

    Article  PubMed  Google Scholar 

  • Conrad KL, Tseng KY, Uejima JL, Reimers JM, Heng L-J, Shaham Y, Marinelli M, Wolf ME (2008) Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454:118–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Consoli D, Contarino A, Tabarin A, Drago F (2009) Binge-like eating in mice. Int J Eat Disord 42:402–408

    Article  PubMed  Google Scholar 

  • Cornish JL, Kalivas PW (2000) Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J Neurosci 20:RC89

    CAS  PubMed  Google Scholar 

  • Dalley JW, Laane K, Theobald DEH, Armstrong HC, Corlett PR, Chudasama Y, Robbins TW (2005) Time-limited modulation of appetitive Pavlovian memory by D1 and NMDA receptors in the nucleus accumbens. Proc Natl Acad Sci U S A 102:6189–6194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • D’Cunha TM, Sedki F, Macri J, Casola C, Shalev U (2013) The effects of chronic food restriction on cue-induced heroin seeking in abstinent male rats. Psychopharmacology 225:241–250

    Article  PubMed  Google Scholar 

  • Deroche V, Marinelli M, Maccari S, Le Moal M, Simon H, Piazza PV (1995) Stress-induced sensitization and glucocorticoids: I. Sensitization of dopamine-dependent locomotor effects of amphetamine and morphine depends on stress-induced corticosterone secretion. J Neurosci 15:7181–7188

    CAS  PubMed  Google Scholar 

  • Di Chiara G (2005) Dopamine in disturbances of food and drug motivated behavior: a case of homology? Physiol Behav 86:9–10

    Article  PubMed  Google Scholar 

  • Ehlers MD, Heine M, Groc L, Lee MC, Choquet D (2007) Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron 54:447–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esteban JA, Shi SH, Wilson C, Nuriya M, Huganir RL, Malinow R (2003) PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci 6:136–143

    Article  CAS  PubMed  Google Scholar 

  • Famous KR, Kumaresan V, Sadri-Vakili G, Schmidt HD, Mierke DF, Cha JH, Pierce RC (2008) Phosphorylation-dependent trafficking of GluR2-containing AMPA receptors in the nucleus accumbens plays a critical role in the reinstatement of cocaine seeking. J Neurosci 28:11061–11070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrario CR, Li X, Wolf ME (2011) Effects of acute cocaine or dopamine receptor agonists on AMPA receptor distribution in the rat nucleus accumbens. Synapse 65:54–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • French SA, Perry CL, Leon GR, Fulkerson JA (1994) Weight concerns, dieting behavior, and smoking initiation among adolescents: a prospective study. Am J Public Health 84:1818–1820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glass MJ, Lane DA, Colago EEO, Chan J, Schlussman SD, Zhou Y, Kreek MJ, Pickel VM (2008) Chronic administration of morphine is associated with a decrease in surface AMPA GluR1 receptor subunit in dopamine D1 receptor expressing neurons in the shell and non-D1 receptor expressing neurons in the core of the rat nucleus accumbens. Exp Neurol 210:750–761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goel A, Jiang B, Xu LW, Song L, Kirkwood A, Lee HK (2006) Cross-modal regulation of synaptic AMPA receptors in primary sensory cortices by visual experience. Nat Neurosci 9:1001–1003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Groenewegen HJ, Wright CI, Beijer AV, Voorn P (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877:49–63

    Article  CAS  PubMed  Google Scholar 

  • Haberny SL, Carr KD (2005a) Comparison of basal and D-1 dopamine receptor agonist-stimulated neuropeptide gene expression in caudate-putamen and nucleus accumbens of ad libitum fed and food-restricted rats. Mol Brain Res 141:121–127

    Article  CAS  PubMed  Google Scholar 

  • Haberny SL, Carr KD (2005b) Food restriction increases NMDA receptor-mediated CaMK II and NMDA receptor/ERK 1/2-mediated CREB phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats. Neuroscience 132:1035–1043

    Article  CAS  PubMed  Google Scholar 

  • Haberny S, Berman Y, Meller E, Carr KD (2004) Chronic food restriction increases D-1 dopamine receptor agonist-induced ERK1/2 MAP kinase and CREB phosphorylation in caudate-putamen and nucleus accumbens. Neuroscience 125:289–298

    Article  CAS  PubMed  Google Scholar 

  • Hagan MM, Moss DE (1997) Persistence of binge-eating patterns after a history of restriction with intermittent bouts of refeeding on palatable food in rats: implications for bulimia nervosa. Int J Eat Disord 22:411–420

    Article  CAS  PubMed  Google Scholar 

  • Hajnal A, Smith GP, Norgren R (2004) Oral sucrose stimulation increases accumbens dopamine in the rat. Am J Physiol - Reg Integr Comp Physiol 286:R31–R37

    Article  CAS  Google Scholar 

  • He K, Song L, Cummings LW, Goldman J, Huganir RL, Lee HK (2009) Stabilization of Ca2+-permeable AMPA receptors at perisynaptic sites by GluR1-S845 phosphorylation. Proc Natl Acad Sci 106:20033–20038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He K, Goel A, Ciarkowski CE, Song L, Lee HK (2011) Brain area specific regulation of synaptic AMPA receptors by phosphorylation. Commun Integr Biol 4:569–572

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Ann Rev Neurosci 29:565–598

    Article  CAS  PubMed  Google Scholar 

  • Ivezaj V, Saules KK, Wiedemann AA (2012) "I didn’t see this coming.": why are postbariatric patients in substance abuse treatment? Patients’ perceptions of etiology and future recommendations. Obes Surg 22:1308–1314

    Article  PubMed  Google Scholar 

  • Jitsuki S, Takemoto K, Kawasaki T, Tada H, Takahashi A, Becamel C, Sano A, Yuzaki M, Zukin RS, Ziff EB, Kessels HW, Takahashi T (2011) Serotonin mediates cross-modal reorganization of cortical circuits. Neuron 69:780–792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jordan BA, Fernholz BD, Boussac M, Xu C, Grigorean G, Ziff EB, Neubert TA (2004) Identification and verification of novel rodent postsynaptic density proteins. Mol Cell Proteomics 3:857–871

    Article  CAS  PubMed  Google Scholar 

  • Kelley AE (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 27:765–776

    Article  PubMed  Google Scholar 

  • Kelley AE, Berridge KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22:3306–3303

    CAS  PubMed  Google Scholar 

  • Kenny PJ (2011) Reward mechanisms in obesity: new insights and future directions. Neuron 69:664–679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kessels HW, Malinow R (2009) Synaptic AMPA receptor plasticity and behavior. Neuron 61:340–350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koike M, Iino M, Ozawa S (1997) Blocking effect of 1-naphthyl acetyl spermine on Ca2+-permeable AMPA receptors in cultured rat hippocampal neurons. Neurosci Res 29:27–36

    Article  CAS  PubMed  Google Scholar 

  • Krahn D, Kurth C, Demitrack M, Drewnowski A (1992) The relationship of dieting severity and bulimic behaviors to alcohol and other drug use in young women. J Subst Abuse 4:341–353

    Article  CAS  PubMed  Google Scholar 

  • Lee HK (2012) Ca-permeable AMPA receptors in homeostatic synaptic plasticity. Front Mol Neurosci 5(17):1–11

    Google Scholar 

  • Li D, Herrera S, Bubula N, Nikitina E, Palmer AA, Hanck DA, Loweth JA, Vezina P (2011) Casein kinase 1 enables nucleus accumbens amphetamine-induced locomotion by regulating AMPA receptor phosphorylation. J Neurochem 118:237–247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu S, Zheng D, Peng XX, Cabeza de Vaca S, Carr KD (2011) Enhanced cocaine-conditioned place preference and associated brain regional levels of BDNF, p-ERK1/2 and p-Ser845-GluA1 in food-restricted rats. Brain Res 1400:31–41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lobo MK, Covington HE 3rd, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, Dietz DM, Zaman S, Koo JW, Kennedy PJ, Mouzon E, Mogri M, Neve RL, Deisseroth K, Han MH, Nestler EJ (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330:385–390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Man HY (2011) GluA2-lacking, calcium-permeable AMPA receptors—inducers of plasticity? Curr Opin Neurobiol 21:291–298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Man HY, Sekine-Aizawa Y, Huganir RL (2007) Regulation of {alpha}-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu receptor 1 subunit. Proc Natl Acad Sci 104:3579–3584

    Article  PubMed Central  PubMed  Google Scholar 

  • Mangiavacchi S, Wolf ME (2004) D1 dopamine receptor stimulation increases the rate of AMPA receptor insertion onto the surface of cultured nucleus accumbens neurons through a pathway dependent on protein kinase A. J Neurochem 88:1261–1271

    Article  CAS  PubMed  Google Scholar 

  • Moyer JT, Wolf JA, Finkel LH (2007) Effects of dopaminergic modulation on the integrative properties of the ventral striatal medium spiny neuron. J Neurophysiol 98:3731–3748

    Article  CAS  PubMed  Google Scholar 

  • Nedelescu H, Kelso CM, Lázaro-Muñoz G, Purpura M, Cain CK, Ledoux JE, Aoki C (2010) Endogenous GluR1-containing AMPA receptors translocate to asymmetric synapses in the lateral amygdala during the early phase of fear memory formation: an electron microscopic immunocytochemical study. J Comp Neurol 518:4723–4739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson CL, Milovanovic M, Wetter JB, Ford KA, Wolf ME (2009) Behavioral sensitization to amphetamine is not accompanied by changes in glutamate receptor surface expression in the rat nucleus accumbens. J Neurochem 109:35–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oh MC, Derkach VA, Guire ES, Soderling TR (2006) Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation. J Biol Chem 281:752–758

    Article  CAS  PubMed  Google Scholar 

  • Ozawa S, Kamiya H, Tsuzuki K (1998) Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54:581–618

    Article  CAS  PubMed  Google Scholar 

  • Palmiter RD (2007) Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci 30:375–381

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Haberny LY, Berman Y, Meller E, Carr KD (2006) Synthesis, protein levels and phosphorylation state of tyrosine hydroxylase in mesoaccumbens and nigrostriatal dopamine pathways of chronically food-restricted rats. Brain Res 1122:135–142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Peng XX, Ziff EB, Carr KD (2011) Effects of food restriction and sucrose intake on synaptic delivery of AMPA receptors in nucleus accumbens. Synapse 65:1024–1031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pisetsky EM, Chao YM, Dierker LC, May AM, Striegel-Moore RH (2008) Disordered eating and substance use in high-school students: results from the Youth Risk Behavior Surveillance System. Int J Eat Disord 41:464–470

    Article  PubMed  Google Scholar 

  • Pontieri FE, Tanda G, Di Chiara G (1995) Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc Natl Acad Sci 92:12304–12308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pothos EN, Creese I, Hoebel BG (1995) Restricted eating with weight loss selectively decreases extracellular dopamine in the nucleus accumbens and alters dopamine response to amphetamine, morphine, and food intake. J Neurosci 15:6640–6650

    CAS  PubMed  Google Scholar 

  • Reimers JM, Milovanovic M, Wolf ME (2011) Quantitative analysis of AMPA receptor subunit composition in addiction-related brain regions. Brain Res 1367:223–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roche KW, O’Brien RJ, Mammen AL, Bernhardt J, Huganir RL (1996) Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 16:1179–1188

    Article  CAS  PubMed  Google Scholar 

  • Root TL, Pinheiro AP, Thornton L, Strober M, Fernandez-Aranda F, Brandt H, Crawford S, Fichter MM, Halmi KA, Johnson C, Kaplan AS, Klump KL, La Via M, Mitchell J, Woodside DB, Rotondo A, Berrettini WH, Kaye WH, Bulik CM (2010) Substance use disorders in women with anorexia nervosa. Int J Eat Disord 43:14–21

    PubMed Central  PubMed  Google Scholar 

  • Rosse R, Deutsch S, Chilton M (2005) Cocaine addicts prone to cocaine-induced psychosis have lower body mass index than cocaine addicts resistant to cocaine-induced psychosis—implications for the cocaine model of psychosis proneness. Isr J Psychiatry Relat Sci 42:45–50

    PubMed  Google Scholar 

  • Shepherd JD (2012) Memory, plasticity and sleep—a role for calcium permeable AMPA receptors? Front Mol Neurosci 5(49):1–5

    Google Scholar 

  • Shi S, Hayashi Y, Esteban JA, Malinow R (2001) Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105:331–343

    Article  CAS  PubMed  Google Scholar 

  • Simon GE, Von Korff M, Saunders K, Miglioretti DL, Crane PK, van Belle G, Kessler RC (2006) Association between obesity and psychiatric disorders in the US adult population. Arch Gen Psychiatry 63:824–830

    Article  PubMed Central  PubMed  Google Scholar 

  • Stamp JA, Mashoodh R, van Kampen JM, Robertson HA (2008) Food restriction enhances peak corticosterone levels, cocaine-induced locomotor activity, and DeltaFosB expression in the nucleus accumbens of the rat. Brain Res 1204:94–101

    Article  CAS  PubMed  Google Scholar 

  • Stouffer M, Carr KD, Rice ME (2012) Insulin-induced increase in striatal dopamine release are enhanced by chronic food restriction and blunted by an obesogenic diet. Soc Neurosci Abstr 283:06

    Google Scholar 

  • Stuber GD, Evans SB, Higgins MS, Pu Y, Figlewicz DP (2002) Food restriction modulates amphetamine-conditioned place preference and nucleus accumbens dopamine release in the rat. Synapse 46:83–90

    Article  CAS  PubMed  Google Scholar 

  • Surmeier J, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228–235

    Article  CAS  PubMed  Google Scholar 

  • Tsubokawa H, Oguro K, Masuzawa T, Nakaima T, Kawai N (1995) Effects of a spider toxin and its analogue on glutamate-activated currents in the hippocampal CA1 neuron after ischemia. J Neurophysiol 74:218–225

    CAS  PubMed  Google Scholar 

  • Volkow ND, Wang G-J, Fowler JS, Telang F (2008) Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Brit 363:3191–3200

    Article  Google Scholar 

  • Warren M, Frost-Pineda K, Gold M (2005) Body mass index and marijuana use. J Addict Dis 24:95–100

    Article  PubMed  Google Scholar 

  • Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097

    Article  CAS  PubMed  Google Scholar 

  • Wiederman MW, Pryor T (1996) Substance abuse and impulsive behaviors among adolescents with eating disorders. Addict Behav 21:269–272

    Article  CAS  PubMed  Google Scholar 

  • Wise RA, Bozarth MA (1985) Brain mechanisms of drug reward and euphoria. Psychiatr Med 3:445–460

    CAS  PubMed  Google Scholar 

  • Wolf JA, Moyer JT, Maciej T, Lazarewicz DC, Benoit-Marand M, O’Donnell P, Finkel LH (2005) NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. J Neurosci 25:9080–9095

    Article  CAS  PubMed  Google Scholar 

  • Zheng D, Cabeza de Vaca S, Carr KD (2012) Food restriction increases acquisition, persistence and drug prime-induced expression of a cocaine-conditioned place preference in rats. Pharmacol Biochem Behav 100:538–544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng D, Liu S, Cabeza de Vaca S, Carr KD (2013) Effects of time of feeding on psychostimulant reward, conditioned place preference, metabolic hormone levels, and nucleus accumbens biochemical measures in food-restricted rats. Psychopharmacology 227:307–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by DA003956 (K.D. C.) and 5T32 DA007254 (X-X. P) from the National Institute on Drug Abuse, and NS061920 from the National Institute on Neurological Disorders and Stroke (E.B.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth D. Carr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, XX., Cabeza de Vaca, S., Ziff, E.B. et al. Involvement of nucleus accumbens AMPA receptor trafficking in augmentation of D- amphetamine reward in food-restricted rats. Psychopharmacology 231, 3055–3063 (2014). https://doi.org/10.1007/s00213-014-3476-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3476-7

Keywords

Navigation