Abstract
Background
The purpose of this study was to examine the effects of alcohol hangover on simulated highway driving performance.
Methods
Driving performance of forty-two social drinkers was tested the morning following an evening of consuming on average 10.2 (SD = 4.2) alcoholic drinks (alcohol hangover) and on a control day (no alcohol consumed). Subjects performed a standardized 100-km highway driving test in the STISIM driving simulator. In addition to the standard deviation of lateral position (SDLP; i.e., the weaving of the car), lapses of attention were examined. Self-reported driving quality and driving style were scored, as well as mental effort to perform the test, sleepiness before and after driving, and hangover severity.
Results
Driving performance was significantly impaired during alcohol hangover as expressed by an SDLP increase of +1.9 cm (t (1,41) = 2.851, p = 0.007), increased number of lapses relative to the control day (7.7 versus 5.3 lapses, t (1,41) = 2.125, p = 0.019), and an increased total lapse time (182.7 versus 127.3 s, p = 0.040). During alcohol hangover, subjects reported their driving quality to be significantly poorer (t (1,41) = 4.840, p = 0.001) and less safe (t (1,41) = 5.078, p = 0.001), wise (t (1,41) = 4.061, p = 0.001), predictable (t (1,41) = 3.475, p = 0.001), and responsible (t (1,41) = 4.122, p = 0.001). Subjects further reported being significantly more tense while driving (t (1,41) = 3.280, p = 0.002), and more effort was needed to perform the driving test (t (1,41) = 2.941, p = 0.001). There was a significant interaction with total sleep time and hangover effects on SDLP and the number of lapses.
Conclusions
In conclusion, driving is significantly impaired during alcohol hangover, as expressed in an elevated SDLP and increased number of lapses. Total sleep time has a significant impact on the magnitude of driving impairment.
Similar content being viewed by others
References
Åkerstedt T, Gillberg M (1990) Subjective and objective sleepiness in the active individual. Int J Neurosci 52:29–37
Brookhuis KA, De Waard D, Samyn N (2004) Effects of MDMA (ecstacy), and multiple drug use on (simulated) driving performance and traffic safety. Psychopharmacology 173:440–445
Helland A, Jenssen GD, Lervåg LE, Westin AA, Moen T, Sakshaug K, Lydersen S, Mørland J, Slørdal L (2013) Comparison of driving simulator performance with real driving after alcohol intake: a randomised, single blind, placebo-controlled, cross-over trial. Accid Anal Prev 53:9–16
Howland J, Rohsenow DJ, Edwards EM (2008) Are some drinkers resistant to hangover? A literature review. Curr Drug Abuse Rev 1:42–46
Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG (1993) Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int J Aviat Psychol 3:203–220
Kim DJ, Kim W, Yoon SJ, Choi BM, Kim JS, Go HJ, Kim YK, Jeong J (2003) Effects of alcohol hangover on cytokine production in healthy subjects. Alcohol 31:167–170
Laska E, Meisner M, Wanderling J (2012) A maximally selected test of symmetry about zero. Stat Med 31:3178–3191
Laurell H, Törnros J (1983) Investigation of alcoholic hangover effects on driving performance. Blut Alcohol 20:489–499
Ling J, Stephens R, Heffernan TM (2010) Cognitive and psychomotor performance during alcohol hangover. Curr Drug Abuse Rev 3:80–87
Louwerens JW, Gloerich ABM, De Vries G, Brookhuis KA, O’Hanlon JF (1987) The relationship between drivers’ blood alcohol concentration (BAC) and actual driving performance during high speed travel. In: Noordzij PC, Roszbach R (eds) Alcohol, drugs and traffic safety-T86. Excerpta Medica, Amsterdam, pp 183–183
McCormick IA, Walkey FH, Green DE (1987) Comparative perceptions of driver ability—a confirmation and expansion. Accid Anal Prev 18:205–208
McKinney A, Coyle K (2004) Next day effects of a normal night's drinking on memory and psychomotor performance. Alcohol Alcohol 39:509–513
McKinney A, Coyle K (2006) Alcohol hangover effects on measures of affect the morning after a normal night's drinking. Alcohol Alcohol 41:54–60
Meijman TF, Thunnissen MJ, de Vries-Griever AGH (1990) The after-effects of a prolonged period of day-sleep on subjective sleep quality. Work Stress 4:65–70
Mets MA, Kuipers E, de Senerpont Domis LM, Leenders M, Olivier B, Verster JC (2011) Effects of alcohol on highway driving in the STISIM driving simulator. Hum Psychopharmacol 26:434–439
O’Hanlon JF, Haak TW, Blauw GJ, Riemersma JBJ (1982) Diazepam impairs lateral position control in highway driving. Science 217:79–81
Penning R, McKinney A, Verster JC (2012) Alcohol hangover symptoms and their contribution to overall hangover severity. Alcohol Alcoholism 47:248–252
Penning R, van Nuland M, Fliervoet LA, Olivier B, Verster JC (2010) The pathology of alcohol hangover. Curr Drug Abuse Rev 3:68–75
Penning R, McKinney A, Bus LD, Olivier B, Slot K, Verster JC (2013) Measurement of alcohol hangover severity: development of the Alcohol Hangover Severity Scale (AHSS). Psychopharmacology 225:803–810
Roehrs T, Beare D, Zorick F, Roth T (1994) Sleepiness and ethanol effects on simulated driving. Alcohol Clin Exp Res 8:154–158
Rohsenow DJ, Howland J, Minsky S, Greece J, Almeida A, Roehrs TA (2007) The acute hangover scale: a new measure of immediate hangover symptoms. Addict behav 32:1314–1320
Stephens R, Ling J, Heffernan TM, Heather N, Jones K (2008) A review of the literature on the cognitive effects of alcohol hangover. Alcohol Alcohol 43:163–170
Törnros J, Laurell H (1991) Acute and hangover effects of alcohol on simulated driving performance. Blut Alcohol 28:24–30
Verster JC, Roth T (2011) Standard operation procedures for conducting the on-the-road driving test, and measurement of the standard deviation of lateral position (SDLP). Int J Gen Med 4:359–371
Verster JC, Roth T (2012) Predicting psychopharmacological drug effects on actual driving (SDLP) from psychometric tests measuring driving-related skills. Psychopharmacology 220(2):293–301
Verster JC, Stephens R, Penning R, Rohsenow D, McGeary J, Levy D, McKinney A, Finnigan F, Piasecki TM, Adan A, Batty GD, Fliervoet LAL, Heffernan T, Howland J, Kim D-J, Kruisselbrink LD, Ling J, McGregor N, Murphy RJL, van Nuland M, Oudelaar AM, Parkes A, Prat G, Reed N, Slutske WS, Smith G, Young M, on behalf of the Alcohol Hangover Research Group (2010) The Alcohol Hangover Research Group consensus statement on best practice in alcohol hangover research. Curr Drug Abuse Rev 3:116–127
Verster JC, Tiplady B, McKinney A (2012) Mobile technology and naturalistic study designs in addiction research. Curr Drug Abuse Rev 5:169–171
Verster JC, van der Maarel M, McKinney A, Olivier B, de Haan L (2014a) Driving during alcohol hangover among Dutch professional truck drivers. Traffic Inj Prev. doi:10.1080/15389588.2013.833329
Verster JC, Bervoets AC, de Klerk S, Roth T (2014b) Lapses of attention as outcome measure of the on-the-road driving test. Psychopharmacology 231:283–292
Acknowledgments
Thanks to Gene Laska for his help with the symmetry analysis and Pieter van Dorp van Vliet for the artwork.
Conflict of interest
This study was funded by Utrecht University.
Joris Verster has received grants/research support from the Dutch Ministry of Infrastructure and the Environment, Takeda, and Red Bull and has acted as a consultant for the Canadian Beverage Association, Centraal Bureau Drogisterijbedrijven, Coleman Frost, Deenox, Purdue, Red Bull, Sanofi-Aventis, Sepracor, Takeda, Transcept, and Trimbos Institute.
Thomas Roth has received grants/research support from Aventis, Cephalon, GlaxoSmithKline, Neurocrine, Pfizer, Sanofi, Schering-Plough, Sepracor, Somaxon, Syrex, Takeda, TransOral, Wyeth, and Xenoport; has acted as a consultant for Abbott, Acadia, Acoglix, Actelion, Alchemers, Alza, Ancil, Arena, AstraZeneca, Aventis, AVER, BMS, BTG, Cephalon, Cypress, Dove, Elan, Eli Lilly, Evotec, Forest, GlaxoSmithKline, Hypnion, Impax, Intec, Intra-Cellular, Jazz, Johnson & Johnson, King, Lundbeck, McNeil, MediciNova, Merck, Neurim, Neurocrine, Neurogen, Novartis, Orexo, Organon, Prestwick, Procter & Gamble, Pfizer, Purdue, Resteva, Roche, Sanofi, Schering-Plough, Sepracor, Servier, Shire, Somaxon, Syrex, Takeda, TransOral, Vanda, Vivometrics, Wyeth, Yamanuchi, and Xenoport.
Berend Olivier is a scientific advisor for Emotional Brain BV and has received research support from Emotional Brain, PsychoGenics Inc, Sepracor, Servier, Abbott, and the Dutch Brain Research Organization.
Karel Brookhuis has received grants/research support from NWO, the Dutch Ministry of Infrastructure and the Environment, European Commission, Wyeth, Sanofi, Schering, Nissan, JARI, Mercedes Benz, and Verbond van Verzekeraars.
The other authors have no potential conflicts of interest to disclose.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Verster, J.C., Bervoets, A.C., de Klerk, S. et al. Effects of alcohol hangover on simulated highway driving performance. Psychopharmacology 231, 2999–3008 (2014). https://doi.org/10.1007/s00213-014-3474-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00213-014-3474-9