Skip to main content
Log in

Cilostazol improves hippocampus-dependent long-term memory in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Phosphodiesterases (PDEs) play an important role in the regulation of intracellular signaling mediated by cyclic adenosine monophosphate (cAMP). Recently, several PDE inhibitors were assessed for their possible cognitive enhancing properties. However, little is known about the effect of PDE3 inhibitors on memory function.

Objectives

We examined how the PDE3 inhibitor cilostazol affects C57BL/6 J mice as they perform various behavioral tasks. After behavioral assessment, brains of the mice were analyzed immunohistochemically to quantify the phosphorylation of cAMP-responsive element binding protein (CREB), a downstream component of the cAMP pathway.

Results

Oral administration of cilostazol significantly enhanced recollection of the exact platform location in the Morris water maze probe test. Cilostazol also improved context-dependent long-term fear memory, without affecting short-term memory. No apparent effect was observed in cue-dependent fear memory. The results suggest that cilostazol selectively improves hippocampus-dependent long-term memory in these tasks. Cilostazol also significantly increased the number of phosphorylated-CREB-positive cells in hippocampal dentate gyrus.

Conclusions

These results suggest that cilostazol may exert its beneficial effects on learning and memory by enhancing the cAMP system in hippocampus, where it increases intracellular cAMP activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn CW, Lee HC, Park SW, Song YD, Huh KB, Oh SJ, Kim YS, Choi YK, Kim JM, Lee TH (2001) Decrease in carotid intima media thickness after 1 year of cilostazol treatment in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 52:45–53

    Article  CAS  PubMed  Google Scholar 

  • Akiyama H, Kudo S, Shimizu T (1985) The absorption, distribution and excretion of a new antithrombotic and vasodilating agent, cilostazol, in rat, rabbit, dog and man. Arzneimittelforschung 35:1124–1132

    CAS  PubMed  Google Scholar 

  • Amaral D, Lavenex P (2006) Hippocampal neuroanatomy. In: Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (eds) The hippocampus book. Oxford University Press, New York, pp 37–114

    Google Scholar 

  • Anagnostaras SG, Maren S, Fanselow MS (1999) Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. J Neurosci 19:1106–1114

    CAS  PubMed  Google Scholar 

  • Arai H, Takahashi T (2009) A combination therapy of donepezil and cilostazol for patients with moderate Alzheimer disease: pilot follow-up study. Am J Geriatr Psychiatry 17:353–354

    Article  PubMed  Google Scholar 

  • Bach ME, Barad M, Son H, Zhuo M, Lu YF, Shih R, Mansuy I, Hawkins RD, Kandel ER (1999) Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway. Proc Natl Acad Sci U S A 96:5280–5285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartsch D, Ghirardi M, Skehel PA, Karl KA, Herder SP, Chen M, Bailey CH, Kandel ER (1995) Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Cell 83:979–992

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blokland A, Geraerts E, Been M (2004) A detailed analysis of rats’ spatial memory in a probe trial of a Morris task. Behav Brain Res 154:71–75

    Article  PubMed  Google Scholar 

  • Blokland A, Schreiber R, Prickaerts J (2006) Improving memory: a role for phosphodiesterases. Curr Pharm Des 12:2511–2523

    Article  CAS  PubMed  Google Scholar 

  • Boccia MM, Blake MG, Krawczyk MC, Baratti CM (2011) Sildenafil, a selective phosphodiesterase type 5 inhibitor, enhances memory reconsolidation of an inhibitory avoidance task in mice. Behav Brain Res 220:319–324

    Article  CAS  PubMed  Google Scholar 

  • Boess FG, Hendrix M, van der Staay FJ, Erb C, Schreiber R, van Staveren W, de Vente J, Prickaerts J, Blokland A, Koenig G (2004) Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology 47:1081–1092

    Article  CAS  PubMed  Google Scholar 

  • Borlikova G, Endo S (2009) Inducible cAMP early repressor (ICER) and brain functions. Mol Neurobiol 40:73–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brightwell JJ, Smith CA, Neve RL, Colombo PJ (2007) Long-term memory for place learning is facilitated by expression of cAMP response element-binding protein in the dorsal hippocampus. Learn Mem 14:195–199

    Article  PubMed  Google Scholar 

  • Burgers PM, Eckstein F, Hunneman DH (1979) Stereochemistry of hydrolysis by snake venom phosphodiesterase. J Biol Chem 254:7476–7478

    CAS  PubMed  Google Scholar 

  • Cone J, Wang S, Tandon N, Fong M, Sun B, Sakurai K, Yoshitake M, Kambayashi J, Liu Y (1999) Comparison of the effects of cilostazol and milrinone on intracellular cAMP levels and cellular function in platelets and cardiac cells. J Cardiovasc Pharmacol 34:497–504

    Article  CAS  PubMed  Google Scholar 

  • Croom KF, Dhillon S (2011) Bevacizumab: a review of its use in combination with paclitaxel or capecitabine as first-line therapy for HER2-negative metastatic breast cancer. Drugs 71:2213–2229

    Article  PubMed  Google Scholar 

  • Cuadrado-Tejedor M, Hervias I, Ricobaraza A, Puerta E, Pérez-Roldán JM, García-Barroso C, Franco R, Aguirre N, García-Osta A (2011) Sildenafil restores cognitive function without affecting β-amyloid burden in a mouse model of Alzheimer’s disease. Br J Pharmacol 164:2029–2041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davis RL (1996) Physiology and biochemistry of Drosophila learning mutants. Physiol Rev 76:299–317

    CAS  PubMed  Google Scholar 

  • Dawson DL, Cutler BS, Meissner MH, Strandness DE Jr (1998) Cilostazol has beneficial effects in treatment of intermittent claudication: results from a multicenter, randomized, prospective, double-blind trial. Circulation 98:678–686

    Article  CAS  PubMed  Google Scholar 

  • Dooley M, Lamb HM (2000) Donepezil: a review of its use in Alzheimer’s disease. Drugs Aging 16:199–226

    Article  CAS  PubMed  Google Scholar 

  • Florian C, Mons N, Roullet P (2006) CREB antisense oligodeoxynucleotide administration into the dorsal hippocampal CA3 region impairs long- but not short-term spatial memory in mice. Learn Mem 13:465–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujioka T, Fujioka A, Duman RS (2004) Activation of cAMP signaling facilitates the morphological maturation of newborn neurons in adult hippocampus. J Neurosci 24:319–328

    Article  CAS  PubMed  Google Scholar 

  • Futatsugi A, Kato K, Ogura H, Li ST, Nagata E, Kuwajima G, Tanaka K, Itohara S, Mikoshiba K (1999) Facilitation of NMDAR-independent LTP and spatial learning in mutant mice lacking ryanodine receptor type 3. Neuron 24:701–713

    Article  CAS  PubMed  Google Scholar 

  • Gallagher M, Burwell R, Burchinal M (1993) Severity of spatial learning impairment in aging: development of a learning index for performance in the Morris water maze. Behav Neurosci 107:618–626

    Article  CAS  PubMed  Google Scholar 

  • Goelet P, Castellucci VF, Schacher S, Kandel ER (1986) The long and the short of long-term memory—a molecular framework. Nature 322:419–422

    Article  CAS  PubMed  Google Scholar 

  • Goldberg ND, Walseth TF, Stephenson JH, Krick TP, Graff G (1980) 18O-Labeling of guanosine monophosphate upon hydrolysis of cyclic guanosine 3′:5′-monophosphate by phosphodiesterase. J Biol Chem 255:10344–10347

    CAS  PubMed  Google Scholar 

  • Gong B, Vitolo OV, Trinchese F, Liu S, Shelanski M, Arancio O (2004) Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest 114:1624–1634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hiramatsu M, Takiguchi O, Nishiyama A, Mori H (2010) Cilostazol prevents amyloid β peptide(25–35)-induced memory impairment and oxidative stress in mice. Br J Pharmacol 161:1899–1912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jung MW, McNaughton BL (1993) Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus 3:165–182

    Article  CAS  PubMed  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  CAS  PubMed  Google Scholar 

  • Kida S (2012) A functional role for CREB as a positive regulator of memory formation and LTP. Exp Neurobiol 21:136–140

    Article  PubMed Central  PubMed  Google Scholar 

  • Kojima N, Borlikova G, Sakamoto T, Yamada K, Ikeda T, Itohara S, Niki H, Endo S (2008) Inducible cAMP early repressor acts as a negative regulator for kindling epileptogenesis and long-term fear memory. J Neurosci 28:6459–6472

    Article  CAS  PubMed  Google Scholar 

  • Kwon SU, Cho YJ, Koo JS, Bae HJ, Lee YS, Hong KS, Lee JH, Kim JS (2005) Cilostazol prevents the progression of the symptomatic intracranial arterial stenosis: the multicenter double-blind placebo-controlled trial of cilostazol in symptomatic intracranial arterial stenosis. Stroke 36:782–786

    Article  CAS  PubMed  Google Scholar 

  • Lakics V, Karran EH, Boess FG (2010) Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology 59:367–374

    Article  CAS  PubMed  Google Scholar 

  • LeDoux JE (1995) Emotion: clues from the brain. Annu Rev Psychol 46:209–235

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Park SY, Shin YW, Kim CD, Lee WS, Hong KW (2007) Concurrent administration of cilostazol with donepezil effectively improves cognitive dysfunction with increased neuroprotection after chronic cerebral hypoperfusion in rats. Brain Res 1185:246–255

    Article  CAS  PubMed  Google Scholar 

  • Leutgeb JK, Leutgeb S, Moser MB, Moser EI (2007) Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315:961–966

    Article  CAS  PubMed  Google Scholar 

  • Li YF, Huang Y, Amsdell SL, Xiao L, O’Donnell JM, Zhang HT (2009) Antidepressant- and anxiolytic-like effects of the phosphodiesterase-4 inhibitor rolipram on behavior depend on cyclic AMP response element binding protein-mediated neurogenesis in the hippocampus. Neuropsychopharmacology 34:2404–2419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu YF, Hawkins RD (2002) Ryanodine receptors contribute to cGMP-induced late-phase LTP and CREB phosphorylation in the hippocampus. J Neurophysiol 88:1270–1278

    CAS  PubMed  Google Scholar 

  • Lucki I, Dalvi A, Mayorga AJ (2001) Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 155:315–322

    Article  CAS  Google Scholar 

  • Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109:366–398

    Article  CAS  PubMed  Google Scholar 

  • Maren S, Aharonov G, Fanselow MS (1997) Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behav Brain Res 88:261–274

    Article  CAS  PubMed  Google Scholar 

  • Mayford M, Kandel ER (1999) Genetic approaches to memory storage. Trends Genet 15:463–470

    Article  CAS  PubMed  Google Scholar 

  • Monti B, Berteotti C, Contestabile A (2006) Subchronic rolipram delivery activates hippocampal CREB and arc, enhances retention and slows down extinction of conditioned fear. Neuropsychopharmacology 31:278–286

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Yamashita H, Nagao M, Horiguchi J, Yamawaki S (2002) Effects of anticholinergic drug withdrawal on memory, regional cerebral blood flow and extrapyramidal side effects in schizophrenic patients. Pharmacopsychiatry 35:6–11

    Article  CAS  PubMed  Google Scholar 

  • Morris RG, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    Article  CAS  PubMed  Google Scholar 

  • Moser DJ, Boles Ponto LL, Miller IN, Schultz SK, Menda Y, Arndt S, Nopoulos PC (2012) Cerebral blood flow and neuropsychological functioning in elderly vascular disease patients. J Clin Exp Neuropsychol 34:220–225

    Article  PubMed Central  PubMed  Google Scholar 

  • Murphy GG, Fedorov NB, Giese KP, Ohno M, Friedman E, Chen R, Silva AJ (2004) Increased neuronal excitability, synaptic plasticity, and learning in aged Kvbeta1.1 knockout mice. Curr Biol 14:1907–1915

    Article  CAS  PubMed  Google Scholar 

  • Nagakura A, Niimura M, Takeo S (2002) Effects of a phosphodiesterase IV inhibitor rolipram on microsphere embolism-induced defects in memory function and cerebral cyclic AMP signal transduction system in rats. Br J Pharmacol 135:1783–1793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neunuebel JP, Knierim JJ (2012) Spatial firing correlates of physiologically distinct cell types of the rat dentate gyrus. J Neurosci 32:3848–3858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Donnell ME, Badger SA, Sharif MA, Young IS, Lee B, Soong CV (2009) The vascular and biochemical effects of cilostazol in patients with peripheral arterial disease. J Vasc Surg 49:1226–1234

    Article  PubMed  Google Scholar 

  • Ota KT, Pierre VJ, Ploski JE, Queen K, Schafe GE (2008) The NO-cGMP-PKG signaling pathway regulates synaptic plasticity and fear memory consolidation in the lateral amygdala via activation of ERK/MAP kinase. Learn Mem 15:792–805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park SH, Kim JH, Bae SS, Hong KW, Lee DS, Leem JY, Choi BT, Shin HK (2011) Protective effect of the phosphodiesterase III inhibitor cilostazol on amyloid β-induced cognitive deficits associated with decreased amyloid β accumulation. Biochem Biophys Res Commun 408:602–608

    Article  CAS  PubMed  Google Scholar 

  • Patel DS, Anand IS, Bhatt PA (2012) Evaluation of antidepressant and anxiolytic activity of phosphodiesterase 3 inhibitor—cilostazol. Indian J Psychol Med 34:124–128

    Article  PubMed Central  PubMed  Google Scholar 

  • Pepeu G, Giovannini MG (2009) Cholinesterase inhibitors and beyond. Curr Alzheimers Res 6:86–96

    Article  CAS  Google Scholar 

  • Perez-Gonzalez R, Pascual C, Antequera D, Bolos M, Redondo M, Perez DI, Pérez-Grijalba V, Krzyzanowska A, Sarasa M, Gil C, Ferrer I, Martinez A, Carro E (2013) Phosphodiesterase 7 inhibitor reduced cognitive impairment and pathological hallmarks in a mouse model of Alzheimer’s disease. Neurobiol Aging 34:2133–2145

    Article  CAS  PubMed  Google Scholar 

  • Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285

    Article  CAS  PubMed  Google Scholar 

  • Pratt CM (2001) Analysis of the cilostazol safety database. Am J Cardiol 87:28D–33D

    Article  CAS  PubMed  Google Scholar 

  • Prickaerts J, Sik A, van Staveren WC, Koopmans G, Steinbusch HW, van der Staay FJ, de Vente J, Blokland A (2004) Phosphodiesterase type 5 inhibition improves early memory consolidation of object information. Neurochem Int 45:915–928

    Article  CAS  PubMed  Google Scholar 

  • Prickaerts J, Sik A, van der Staay FJ, de Vente J, Blokland A (2005) Dissociable effects of acetylcholinesterase inhibitors and phosphodiesterase type 5 inhibitors on object recognition memory: acquisition versus consolidation. Psychopharmacology (Berl) 177:381–390

    Article  CAS  Google Scholar 

  • Puzzo D, Staniszewski A, Deng SX, Privitera L, Leznik E, Liu S, Zhang H, Feng Y, Palmeri A, Landry DW, Arancio O (2009) Phosphodiesterase 5 inhibition improves synaptic function, memory, and amyloid-beta load in an Alzheimer’s disease mouse model. J Neurosci 29:8075–8086

    Article  CAS  PubMed  Google Scholar 

  • Ramirez S, Liu X, Lin PA, Suh J, Pignatelli M, Redondo RL, Ryan TJ, Tonegawa S (2013) Creating a false memory in the hippocampus. Science 341:387–391

    Article  CAS  PubMed  Google Scholar 

  • Reneerkens OA, Rutten K, Steinbusch HW, Blokland A, Prickaerts J (2009) Selective phosphodiesterase inhibitors: a promising target for cognition enhancement. Psychopharmacology (Berl) 202:419–443

    Article  CAS  Google Scholar 

  • Rutten K, Lieben C, Smits L, Blokland A (2007) The PDE4 inhibitor rolipram reverses object memory impairment induced by acute tryptophan depletion in the rat. Psychopharmacology (Berl) 192:275–282

    Article  CAS  Google Scholar 

  • Steele RJ, Morris RG (1999) Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus 9:118–136

    Article  CAS  PubMed  Google Scholar 

  • Takase H, Hashimoto A, Okutsu R, Hirose Y, Ito H, Imaizumi T, Miyakoda G, Mori T (2007) Anti-atherosclerotic effect of cilostazol in apolipoprotein-E knockout mice. Arzneimittelforschung 57:185–191

    CAS  PubMed  Google Scholar 

  • Tota S, Hanif K, Kamat PK, Najmi AK, Nath C (2012) Role of central angiotensin receptors in scopolamine-induced impairment in memory, cerebral blood flow, and cholinergic function. Psychopharmacology (Berl) 222:185–202

    Article  CAS  Google Scholar 

  • van der Staay FJ, Rutten K, Bärfacker L, Devry J, Erb C, Heckroth H, Karthaus D, Tersteegen A, van Kampen M, Blokland A, Prickaerts J, Reymann KG, Schröder UH, Hendrix M (2008) The novel selective PDE9 inhibitor BAY 73–6691 improves learning and memory in rodents. Neuropharmacology 55:908–918

    Article  PubMed  Google Scholar 

  • Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504

    Article  CAS  PubMed  Google Scholar 

  • Warburton EC, Brown MW (2010) Findings from animals concerning when interactions between perirhinal cortex, hippocampus and medial prefrontal cortex are necessary for recognition memory. Neuropsychologia 48:2262–2272

    Article  PubMed  Google Scholar 

  • Xu Y, Zhang HT, O’Donnell JM (2011) Phosphodiesterases in the central nervous system: implications in mood and cognitive disorders. Handb Exp Pharmacol 204:447–485

    Article  CAS  PubMed  Google Scholar 

  • Yanai S, Okaichi Y, Okaichi H (2004) Long-term dietary restriction causes negative effects on cognitive functions in rats. Neurobiol Aging 25:325–332

    Article  PubMed  Google Scholar 

  • Yanai S, Semba Y, Endo S (2012) Remarkable changes in behavior and physiology of laboratory mice after the massive 2011 Tohoku earthquake in Japan. PLoS One 7:e44475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yin JC, Del Vecchio M, Zhou H, Tully T (1995) CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81:107–115

    Article  CAS  PubMed  Google Scholar 

  • Yoo HD, Cho HY, Lee YB (2010) Population pharmacokinetic analysis of cilostazol in healthy subjects with genetic polymorphisms of CYP3A5, CYP2C19 and ABCB1. Br J Clin Pharmacol 69:27–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuede CM, Dong H, Csernansky JG (2007) Anti-dementia drugs and hippocampal-dependent memory in rodents. Behav Pharmacol 18:347–363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank Ms. Masako Suzuki, Tomoko Arasaki, and Kazuko Nakanishi for their technical help. This work is supported in part by JSPS KAKENHI (24730642, 25293331, and 25560382), the Naito Foundation, Japan Foundation for Aging and Health, and Otsuka Pharmaceutical Co., Ltd.

Conflict of interest

Authors declare that there are no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shogo Endo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanai, S., Semba, Y., Ito, H. et al. Cilostazol improves hippocampus-dependent long-term memory in mice. Psychopharmacology 231, 2681–2693 (2014). https://doi.org/10.1007/s00213-014-3442-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3442-4

Keywords

Navigation