Abstract
Rationale
Findings from animal studies and human PET imaging indicate that nicotine and cigarette smoking affect glutamate (Glu) and related neurochemical markers in the brain and imply that smoking reduces extracellular Glu. As Glu release is mediated by nicotinic acetylcholine receptors (nAChRs), which are present at high concentrations in the thalamus, we examined the effects of smoking on thalamic Glu.
Objective
To determine the effects of tobacco smoking on thalamic glutamate levels.
Methods
Thalamic Glu levels were measured in vivo in 18 smokers and 16 nonsmokers using proton magnetic resonance spectroscopic imaging (1H MRSI) at 1.5 T.
Results
Mean Glu levels did not differ significantly between the subject groups. However, within smokers, Glu levels were negatively correlated with self-reports of both cigarettes/day over the last 30 days (r = −0.64, p = 0.006) and pack-years of smoking (r = −0.66, p = 0.005).
Conclusions
Consistent with expectations based on preclinical studies, within smokers, cigarettes/day and pack-years are associated with reduced Glu in thalamus, a brain region rich in nAchRs. These results encourage work on candidate glutamatergic therapies for smoking cessation and suggest a noninvasive metric for their action in the brain.
Similar content being viewed by others
References
Akkus F, Ametamey SM, Treyer V, Burger C, Johayem A, Umbricht D, Gomez Mancilla B, Sovage J, Buck A, Hasler G (2013) Marked global reduction in mGluR5 receptor binding in smokers and ex-smokers determined by [11C]ABP688 positron emission tomography. Proc Natl Acad Sci U S A 110(2):737–742. doi:10.1073/pnas.1210984110
Baker DA, McFarland K, Lake RW, Shen H, Tang XC, Toda S et al (2003) Neuroadaptations in cystine glutamate exchange underlie cocaine relapse. Nat Neurosci 6:743–749. doi:10.1038/nn1069
Ballmaier M, Toga AW, Siddarth P, Blanton RE, Levitt JG, Lee M, Caplan R (2004) Thought disorder and nucleus accumbens in childhood: a structural MRI study. Psychiatry Res 130:43–55. doi:10.1016/j.pscychresns.2003.10.001
Beck AT, Steer RA, Brown GK (1996) Manual for the Beck Depression Inventory, 2nd edn. Psychological Corporation, Harcourt, Brace, San Antonio
Conti F, Weinberg RJ (1999) Shaping excitation at glutamatergic synapses. Trend Neurosci 22(10):451–458. doi:10.1016/s0166-2236(99)01445-9
Cryan JF, Gasparini F, van Heeke G, Markou A (2003) Non-nicotinic neuropharmacological strategies for nicotine dependence: beyond bupropion. Drug Discov Today 8(22):1025–1034. doi:10.1016/S1359-6446(03)02890-3
D’Souza MS, Markou A (2011) Neuronal mechanisms underlying development of nicotine dependence: implications for novel smoking-cessation treatments. Addict Sci Clin Pract 6(1):4–16
Durazzo TC, Gazdzinski S, Banys P, Meyerhoff DJ (2004) Cigarette smoking exacerbates chronic alcohol-induced brain damage: a preliminary metabolite imaging study. Alcohol Clin Exp Res 28(12):1849–1860. doi:10.1097/01.ALC.0000148112.92525.AC
Durazzo TC, Gazdzinski S, Rothlind JC, Banys P, Meyerhoff DJ (2006) Brain metabolite concentrations and neurocognition during short-term recovery from alcohol dependence: preliminary evidence of the effects of concurrent chronic cigarette smoking. Alcohol Clin Exp Res 30(3):539–551. doi:10.1111/j.1530-0277.2006.00060.x
Epperson CN, O’Malley S, Czarkowski KA, Gueorguieva R, Jatlow P, Sanacora G, Rothman DL, Krystal JH, Mason GF (2005) Sex, GABA, and nicotine: the impact of smoking on cortical GABA levels across the menstrual cycle as measured with proton magnetic resonance spectroscopy. Biol Psychiatry 57(1):44–48. doi:10.1016/j.biopsych.2004.09.021
Fagerström KO, Heatherton TF, Kozlowski LT (1990) Nicotine addiction and its assessment. Ear Nose Throat J 69(11):763–765
First MB, Spitzer RL, Gibbon M, Williams JBW (2002) Structured clinical interview for DSM-IV-TR Axis I disorders. Biometrics Research, New York State Psychiatric Institute, New York
Frackowiak R, Friston K, Frith C, Dolan R, Mazziotta J (1997) Human brain function. Academic Press USA, New York
Gallinat J, Meisenzahl E, Jacobsen LK, Kalus P, Bierbrauer J, Kienast T, Witthaus H, Leopold K, Seifert F, Schubert F, Staedtgen M (2006) Smoking and structural brain deficits: a volumetric MR investigation. Eur J Neurosci 24(6):1744–1750. doi:10.1111/j.1460-9568.2006.05050.x
Gallinat J, Schubert F (2007) Regional cerebral glutamate concentrations and chronic tobacco consumption. Pharmacopsychiatry 40(2):64–67. doi:10.1055/s-2007-970144
Gazdzinski S, Durazzo TC, Yeh PH, Hardin D, Banys P, Meyerhoff DJ (2008) Chronic cigarette smoking modulates injury and short-term recovery of the medial temporal lobe in alcoholics. Psychiatry Res 162(2):133–145. doi:10.1016/j.pscychresns.2007.04.003
Horti AG, Scheffel U, Kimes AS, Musachio JL, Ravert HT, Mathews WB, Zhan Y, Finley PA, London ED, Dannals RF (1998) Synthesis and evaluation of N-[11C]methylated analogues of epibatidine as tracers for positron emission tomographic studies of nicotinic acetylcholine receptors. J Med Chem 41(22):4199–4206. doi:10.1021/jm980233p
Hurd R, Sailasuta N, Srinivasan R, Vigneron DB, Pelletier D, Nelson SJ (2004) Measurement of brain glutamate using TE-Averaged PRESS at 3 T. Magn Reson Med 51:435–440
Jain R, Mukherjee K, Balhara YP (2008) The role of NMDA receptor antagonists in nicotine tolerance, sensitization, and physical dependence: a preclinical review. Yonsei Med J 49(2):175–188. doi:10.3349/ymj.2008.49.2.175
Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10:561–572. doi:10.1038/nrn2515
Kenny PJ, Chartoff E, Roberto M, Carlezon WA Jr, Markou A (2009) NMDA Receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: role of the ventral tegmental area and central nucleus of the amygdala. Neuropsychopharmacology 34(2):266–281. doi:10.1038/npp.2008.58
Knackstedt LA, LaRowe S, Mardikian P, Malcolm R, Upadhyaya H, Hedden S, Markou A, Kalivas PW (2009) The role of cystine-glutamate exchange in nicotine dependence in rats and humans. Biol Psychiatry 65(10):841–845. doi:10.1016/j.biopsych.2008
Konradsson-Geuken A, Gash CR, Alexander K, Pomerleau F, Huettl P, Gerhardt GA, Bruno JP (2009) Second-by-second analysis of alpha 7 nicotine receptor regulation of glutamate release in the prefrontal cortex of awake rats. Synapse 63(12):1069–1082. doi:10.1002/syn.20693
Liechti ME, Lhuillier L, Kaupmann K, Markou A (2007) Metabotropic glutamate 2/3 receptors in the ventral tegmental area and the nucleus accumbens shell are involved in behaviors relating to nicotine dependence. J Neurosci 27:9077–9085. doi:10.1523/JNEUROSCI.1766-07.2007
Livingstone PD, Dickinson JA, Srinivasan J, Kew JN, Wonnacott S (2010) Glutamate-dopamine crosstalk in the rat prefrontal cortex is modulated by Alpha7 nicotinic receptors and potentiated by PNU-120596. J Mol Neurosci 40:172–6. doi:10.1007/s12031-009-9232-5
Madayag A, Lobner D, Kau KS, Mantsch JR, Abdulhameed O, Hearing M et al (2007) Repeated N-acetylcysteine administration alters plasticity-dependent effects of cocaine. J Neurosci 27:13968–13976. doi:10.1523/JNEUROSCI.2808-07.2007
Marchi M, Risso F, Viola C, Cavazzani P, Raiteri M (2002) Direct evidence that release-stimulating alpha7* nicotinic cholinergic receptors are localized on human and rat brain glutamatergic axon terminals. J Neurochem 80:1071–8. doi:10.1046/j.0022-3042.2002.00805.x
Mason GF, Petrakis IL, de Graaf RA, Gueorguieva R, Guidone E, Coric V, Epperson CN, Rothman DL, Krystal JH (2006) Cortical gamma-aminobutyric acid levels and the recovery from ethanol dependence: preliminary evidence of modification by cigarette smoking. Biol Psychiatry 59(1):85–93
Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM). Neuroimage 2(2):89–101. doi:10.1006/nimg.1995.1012
McFarland K, Lapish CC, Kalivas PW (2003) Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 23:3531–3537
McLellan AT, Luborsky L, Woody GE, O’Brien CP (1980) An improved diagnostic evaluation instrument for substance abuse patients. The Addiction Severity Index. J Nerv Ment Dis 168(1):26–33
Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113. doi:10.1016/0028-3932(71)90067-4
Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56(3):907–922. doi:10.1016/j.neuroimage.2011.02.046
Peiper N, Rodu B (2013) Evidence of sex differences in the relationship between current tobacco use and past-year serious psychological distress: 2005–2008 National Survey on Drug Use and Health. Soc Psychiatry Psychiatr Epidemiol 48:1261–1271. doi:10.1007/s00127-012-0644-0
Petroff OA, Mattson RH, Rothman DL (2000) Proton MRS: GABA and glutamate. Adv Neurol 83:261–271
Posse S, Otazo R, Caprihan A, Bustillo J, Chen H, Henry P-G, Marjanska M, Gasparovic C, Zuo C, Magnotta V, Mueller B, Mullins P, Renshaw P, Uhurbil K, Lim KO, Alger JR (2007) Proton echo-planar spectroscopic imaging of J-coupled resonances in human brain at 3 and 4 Tesla. Magn Reson Med 58:236–244
Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14(4):260–264. doi:10.1002/nbm.698
Ross B, Bluml S (2001) Magnetic resonance spectroscopy of the human brain. The Anatomical Record 265(2):54–84. doi:10.1002/ar.1058
Rostron B (2013) Smoking-attributable mortality by cause in the United States: revising the CDC’s data and estimates. Nicotine Tob Res 15(1):238–46. doi:10.1093/ntr/nts120
Rousseau SJ, Jones IW, Pullar IA, Wonnacott S (2005) Presynaptic alpha7 and nonalpha7 nicotinic acetylcholine receptors modulate [3H]D-aspartate release from rat frontal cortex in vitro. Neuropharmacology 49:59–72. doi:10.1016/j.neuropharm.2005.01.030
Rubboli F, Court JA, Sala C, Morris C, Chini B, Perry E, Clementi F (1994a) Distribution of nicotinic receptors in the human hippocampus and thalamus. Eur J Neurosci 6(10):1596–1604. doi:10.1111/j.1460-9568.1994.tb00550.x
Rubboli F, Court JA, Sala C, Morris C, Perry E, Clementi F (1994b) Distribution of neuronal nicotinic receptor subunits in human brain. Neurochem Int 25(1):69–71. doi:10.1016/0197-0186(94)90055-8
Sarter M, Parikh V, Howe WM (2009) nAChR agonist-induced cognition enhancement: integration of cognitive and neuronal mechanisms. Biochem Pharmacol 78(7):658–667. doi:10.1016/j.bcp.2009.04.019
Schousboe A, Frandsen A (1995) Glutamate receptors and neurotoxicity. In: Stone TW (ed) CNS neurotransmitters and neuromodulators: glutamate. CRC Press, New York, pp 239–251
Seese RR, O’Neill J, Hudkins M, Siddarth P, Levitt J, Tseng B, Wu KN, Caplan R (2011) Proton magnetic resonance spectroscopy and thought disorder in childhood schizophrenia. Schizophr Res 133(1–3):82–90. doi:10.1016/j.schres.2011.07.011
Spielberger CD (1983) Manual for the State-Trait Anxiety Inventory (STAI-Form Y). Consulting Psychology Press, Palo Alto
Théberge J, Menon RS, Williamson PC, Drost DJ (2005) Implementation issues of multivoxel STEAM-localized 1H spectroscopy. Magn Reson Med 53:713–718
Wang JJ, Durazzo TC, Gazdzinski S, Yeh PH, Mon A, Meyerhoff DJ (2009) MRSI and DTI: a multimodal approach for improved detection of white matter abnormalities in alcohol and nicotine dependence. NMR Biomed 22(5):516–522. doi:10.1002/nbm.1363
Zachary RA, Paulson MJ, Gorsuch RL (1985) Estimating WAIS IQ from the Shipley Institute of Living Scale using continuously adjusted age norms. J Clin Psychol 41(6):820–831. doi:10.1002/1097-4679(198511)41:6
Zhang JM (2013) Human brain glutamate, glutamine, γ-aminobutyric acid, proton magnetic resonance, spectral quantification with the Fast Padé Transform. Doctoral dissertation. UCLA Department of Biomedical Physics.
Acknowledgments
This work was supported by the National Institute on Drug Abuse (P20DA022539, R01DA020726, R03DA20512, and R21DA023192) (EDL and JON), NIMH grants T32MH073517 and K23MH094613 (ELN), the National Center for Research Resources (NIH M01RR00865, UCLA GCRC), and endowments from the Katherine K. and Thomas P. Pike Chair in Addiction Studies, and the Marjorie M. Greene Trust. The research support for projects other than the one reported here was supplied to Dr. Edythe D. London under UCLA Contract (number 20063287) with Philip Morris USA. All experimental procedures comply with the current laws of the USA.
Conflict of interest
None of the authors has a financial relationship with any organization that sponsored this research and none of the sponsors had any involvement with the design, collection, analysis, writing of the manuscript, or the decision to submit the manuscript for publication. The authors have full control of all primary data and agree to allow the journal to review the data if requested.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
O’Neill, J., Tobias, M.C., Hudkins, M. et al. Thalamic glutamate decreases with cigarette smoking. Psychopharmacology 231, 2717–2724 (2014). https://doi.org/10.1007/s00213-014-3441-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00213-014-3441-5