, Volume 231, Issue 13, pp 2623–2632 | Cite as

Prospective memory impairment in long-term opiate users

  • Gill Terrett
  • Skye N. McLennan
  • Julie D. Henry
  • Kathryn Biernacki
  • Kimberly Mercuri
  • H. Valerie Curran
  • Peter G. Rendell
Original Investigation



Opiate use is associated with a range of neurological and cognitive deficits. However, to date, no studies have assessed whether these cognitive deficits extend to the ability to perform intended actions in the future (i.e. prospective memory). Reduced ability in this area might be anticipated due to impaired executive functions and episodic memory associated with long-term opiate use.


The main objectives of this study are to assess the performance of long-term opiate users on a laboratory measure of prospective memory which closely simulates the types of prospective memory tasks encountered in everyday life (‘Virtual Week’) and to investigate the extent to which prospective memory performance is related to executive functions and episodic memory ability.


Twenty-six long-term heroin users enrolled in an opiate substitution program, and 30 controls with no previous history of drug use were tested on Virtual Week. Retrospective memory and executive functions were also assessed.


Long-term opiate users were significantly impaired on prospective memory performance compared with controls (p = 0.002, η2 p = 0.17), and these deficits did not vary as a function of prospective memory task type (regular, irregular, event, time). The findings also suggest that retrospective memory difficulties contribute to the prospective memory difficulties seen in opiate users (r s  = 0.78, p < 0.001) but that executive dysfunction is less influential.


Prospective memory is sensitive to long-term opiate use. Importantly, opiate users suffer from generalised deficits in prospective memory, regardless of the task demands, which may have significant implications for day-to-day functioning. These results may therefore contribute to the development of clinical intervention strategies to reduce the negative impact of prospective memory failures in daily life.


Prospective memory Opiate users Virtual Week Executive functions Retrospective memory 



This research was supported by a Discovery Research Grant from the Australian Research Council. We acknowledge the help of Trevor Daniels in programming Virtual Week. We also acknowledge the help of Candice Bowers in recruiting and testing some of the participants.


  1. Arbuthnott K, Frank J (2000) Trail making test, part B as a measure of executive control: validation using a set-switching paradigm. J Clin Exp Neuropsychol 22:518–528. doi: 10.1076/1380-3395(200008)22:4;1-0;FT518 PubMedCrossRefGoogle Scholar
  2. Australian National Health and Medical Research Council (2001) Australian alcohol guidelines: Health risks and benefits, Commonwealth of Australia, CanberraGoogle Scholar
  3. Bartholomew J, Holroyd S, Heffernan TM (2010) Does cannabis use affect prospective memory in young adults? J Psychopharmacol 24:241–246. doi: 10.1177/0269881109106909 PubMedCrossRefGoogle Scholar
  4. Baudic S, Barba GD, Thibaudet MC, Smagghe A, Remy P, Traykov L (2006) Executive function deficits in early Alzheimer’s disease and their relations with episodic memory. Arch Clin Neuropsychol 21:15–21. doi: 10.1016/j.acn.2005.07.002 PubMedCrossRefGoogle Scholar
  5. Bjelland I, Dahl AA, Haug TT, Neckelmann D (2002) The validity of the Hospital Anxiety and Depression Scale. An updated literature review. J Psychosom Res 52:69–77. doi: 10.1016/S0022-3999(01)00296-3 PubMedCrossRefGoogle Scholar
  6. Brand M, Roth-Bauer M, Driessen M, Markowitsch HJ (2008) Executive functions and risky decision-making in patients with opiate dependence. Drug Alcohol Depend 97:64–72. doi: 10.1016/j.drugalcdep.2008.03.017 PubMedCrossRefGoogle Scholar
  7. Bright P, Jaldow E, Kopelman MD (2002) The National Adult Reading Test as a measure of premorbid intelligence: a comparison with estimates derived from demographic variables. J Int Neuropsychol Soc 8:847–854. doi: PubMedCrossRefGoogle Scholar
  8. Burgess PW, Shallice T (1996) The Hayling and Brixton Tests. Thames Valley Test Company, Bury St Edmonds, EnglandGoogle Scholar
  9. Cockburn J, Smith PT (1994) Anxiety and errors of prospective memory among elderly people. Br J Psychol 85:273–282. doi: 10.1111/j.2044-8295.1994.tb02523.x PubMedCrossRefGoogle Scholar
  10. Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum, Hillsdale, NJGoogle Scholar
  11. Darke S, Sims J, McDonald S, Wickes W (2000) Cognitive impairment among methadone maintenance patients. Addiction 95:687–695. doi: 10.1046/j.1360-0443.2000.9556874.x PubMedCrossRefGoogle Scholar
  12. Darke S, McDonald S, Kaye S, Torok M (2012) Comparative patterns of cognitive performance amongst opioid maintenance patients, abstinent opioid users and non-opioid users. Drug Alcohol Depend 126:309–315. doi: 10.1016/j.drugalcdep.2012.05.032 PubMedCrossRefGoogle Scholar
  13. De Maeyer J, Vanderplasschen W, Lammertyn J, Nieuwenhuizen C, Sabbe B, Broekaert E (2011) Current quality of life and its determinants among opiate-dependent individuals five years after starting methadone treatment. Qual Life Res 20:139–150. doi: 10.1007/s11136-010-9732-3 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Einstein GO, McDaniel MA (1990) Normal aging and prospective memory. J Exp Psychol Learn Mem Cogn 16:717–726. doi: 10.1037/0278-7393.164.717 PubMedCrossRefGoogle Scholar
  15. Einstein GO, McDaniel MA (1996) Retrieval processes in prospective memory: theoretical approaches and some new findings. In: Brandimonte MA, Einstein GO, McDaniel MA (eds) Prospective memory: theory and applications. Lawrence Erlbaum, Mahwah, NJ, pp 115–141Google Scholar
  16. Fabbri M, Tonetti L, Martoni M, Natale V (2013) Sleep and prospective memory. Biol Rhythm Res ahead of print: 1–6Google Scholar
  17. Fernández-Serrano MJ, Pérez-García M, Verdejo-García A (2011) What are the specific vs. generalized effects of drugs of abuse on neuropsychological performance? Neurosci Biobehav Rev 35:377–406. doi: 10.1016/j.neubiorev.2010.04.008 PubMedCrossRefGoogle Scholar
  18. Fishbein DH, Krupitsky E, Flannery BA, Langevin DJ, Bobashev G, Verbitskaya E, Augustine CB, Bolla KI, Zvartau E, Schech B, Egorova V, Bushara N, Tsoy M (2007) Neurocognitive characterizations of Russian heroin addicts without a significant history of other drug use. Drug Alcohol Depend 90:25–38. doi: 10.1016/j.drugalcdep.2007.02.015 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Foster ER, Rose NS, McDaniel MA, Rendell PG (2013) Prospective memory in Parkinson Disease during a virtual week: effects of both prospective and retrospective demands. Neuropsychology 27:170–181. doi: 10.1037/a0031946 PubMedCrossRefGoogle Scholar
  20. Griffiths A, Hill R, Morgan C, Rendell PG, Karimi K, Wanagaratne S, Curran HV (2012) Prospective memory and future event simulation in individuals with alcohol dependence. Addiction 107:1809–1816. doi: 10.1111/j.1360-0443.2012.03941.x PubMedCrossRefGoogle Scholar
  21. Grundgeiger T, Bayen UJ, Horn SS (2013) Effects of sleep deprivation on prospective memory. Memory ahead of print: 1–8.Google Scholar
  22. Hadjiefthyvoulou F, Fisk JE, Montgomery C, Bridges N (2011) Prospective memory functioning among ecstasy/polydrug users: evidence from the Cambridge Prospective Memory Test (CAMPROMPT). Psychopharmacology 215:761–774. doi: 10.1007/s00213-011-2174-y PubMedCrossRefGoogle Scholar
  23. Harris LM, Cumming SR (2003) An examination of the relationship between anxiety and performance on prospective and retrospective memory tasks. Aust J Psychol 55:51–55. doi: 10.1080/00049530412331312874 CrossRefGoogle Scholar
  24. Henry JD, Rendell PG, Kliegel M, Altgassen M (2007) Prospective memory in schizophrenia: primary or secondary impairment? Schizophr Res 95:179–185. doi: 10.1016/j.schres.2007.06.003 PubMedCrossRefGoogle Scholar
  25. Holmes D (2012) Prescription drug addiction: the treatment challenge. Lancet 379:17–18PubMedCrossRefGoogle Scholar
  26. Liu LL, Park DC (2004) Aging and medical adherence: the use of automatic processes to achieve effortful things. Psychol Aging 19:318. doi: 10.1037/0882-7974.19.2.318 PubMedCrossRefGoogle Scholar
  27. Liu H, Li L, Hao Y, Cao D, Xu L, Rohrbaugh R, Xue Z, Hao W, Shan B, Liu Z (2008) Disrupted white matter integrity in heroin dependence: a controlled study utilizing diffusion tensor imaging. Am J Drug Alcohol Abuse 34:562–575. doi: 10.1080/00952990802295238 PubMedCrossRefGoogle Scholar
  28. Liu H, Hao Y, Kaneko Y, Ouyang X, Zhang Y, Xu L, Xue Z, Liu Z (2009) Frontal and cingulate gray matter volume reduction in heroin dependence: optimized voxel-based morphometry. Psychiatry Clin Neurosci 63:563–568. doi: 10.1111/j.1440-1819.2009.01989.x PubMedCrossRefGoogle Scholar
  29. Lyoo IK, Streeter CC, Ahn KH, Lee HK, Pollack MH, Silveri MM, Nassar L, Levin JM, Sarid-Segal O, Ciraulo DA (2004) White matter hyperintensities in subjects with cocaine and opiate dependence and healthy comparison subjects. Psychiatry Res Neuroimaging 131:135–145. doi: 10.1016/j.pscychresns.2004.04.001 CrossRefGoogle Scholar
  30. Lyoo IK, Pollack MH, Silveri MM, Ahn KH, Diaz CI, Hwang J, Kim SJ, Yurgelun-Todd DA, Kaufman MJ, Renshaw PF (2006) Prefrontal and temporal gray matter density decreases in opiate dependence. Psychopharmacology 184:139–144. doi: 10.1007/s00213-005-0198-x PubMedCrossRefGoogle Scholar
  31. Martin M, Kliegel M, McDaniel MA (2003) The involvement of executive functions in prospective memory performance of adults. Int J Psychol 38:195–206. doi: 10.1080/00207590244000205 CrossRefGoogle Scholar
  32. Martinez D, Saccone PA, Liu F, Slifstein M, Orlowska D, Grassetti A, Cook S, Broft A, Van Heertum R, Comer SD (2012) Deficits in dopamine D(2) receptors and presynaptic dopamine in heroin dependence: commonalities and differences with other types of addiction. Biol Psychiatry 71:192–198. doi: 10.1016/j.biopsych.2011.08.024 PubMedCentralPubMedCrossRefGoogle Scholar
  33. McDaniel MA, Einstein GO (2000) Strategic and automatic processes in prospective memory retrieval: A multiprocess framework. Applied Cognitive Psychology Special Issue: New perspectives in prospective memory 14: S127-S144. doi:  10.1002/acp.775
  34. McDaniel MA, Einstein GO (2007) Prospective memory: an overview and synthesis of an emerging field. Sage, Thousand Oaks, CAGoogle Scholar
  35. McFarland C, Glisky EL (2012) Implementation intentions and imagery: individual and combined effects on prospective memory among young adults. Mem Cogn 40:62–69CrossRefGoogle Scholar
  36. McHale S, Hunt N (2008) Executive function deficits in short-term abstinent cannabis users. Hum Psychopharmacol Clin 23:409–415. doi: 10.1002/hup.941 CrossRefGoogle Scholar
  37. Mintzer MZ, Stitzer ML (2002) Cognitive impairment in methadone maintenance patients. Drug Alcohol Depend 67:41–51. doi: 10.1016/S0376-8716(02)00013-3 PubMedCrossRefGoogle Scholar
  38. Mintzer MZ, Copersino ML, Stitzer ML (2005) Opioid abuse and cognitive performance. Drug Alcohol Depend 78:225–230. doi: 10.1016/j.drugalcdep.2004.10.008 PubMedCrossRefGoogle Scholar
  39. Mioni G, Rendell PG, Henry JD, Cantagallo A, Stablum F (2013) An investigation of prospective memory function in people with traumatic brain injury using Virtual Week. J Clin Exp Neuropsychol 35:617–630. doi: 10.1080/13803395.2013.804036 PubMedCrossRefGoogle Scholar
  40. Montgomery C, Seddon AL, Fisk JE, Murphy PN, Jansari A (2012) Cannabis-related deficits in real-world memory. Hum Psychopharmacol Clin 27:217–225. doi: 10.1002/hup.1273 CrossRefGoogle Scholar
  41. Nelson HE (1982) National Adult Reading Test (NART): Test manual. NFER, WindsorGoogle Scholar
  42. Passetti F, Clark L, Mehta MA, Joyce E, King M (2008) Neuropsychological predictors of clinical outcome in opiate addiction. Drug Alcohol Depend 94:82–91. doi: 10.1016/j.drugalcdep.2007.10.008 PubMedCrossRefGoogle Scholar
  43. Pau CWH, Lee T, Chan SF (2002) The impact of heroin on frontal executive functions. Arch Clin Neuropsychol 17:663–670. doi: 10.1016/S0887-6177(01)00169-X PubMedCrossRefGoogle Scholar
  44. Prosser J, Cohen LJ, Steinfeld M, Eisenberg D, London ED, Galynker II (2006) Neuropsychological functioning in opiate-dependent subjects receiving and following methadone maintenance treatment. Drug Alcohol Depend 84:240–247. doi: 10.1016/j.drugalcdep.2006.02.006 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Rendell PG, Craik FIM (2000) Virtual week and actual week: age-related differences in prospective memory. Appl Cogn Psychol 14:S43–S62. doi: 10.1002/acp.770 CrossRefGoogle Scholar
  46. Rendell PG, Gray TJ, Henry JD, Tolan A (2007) Prospective memory impairment in “ecstasy” (MDMA) users. Psychopharmacology 194:497–504. doi: 10.1007/s00213-007-0859-z PubMedCrossRefGoogle Scholar
  47. Rendell PG, Mazur M, Henry JD (2009) Prospective memory impairment in former users of methamphetamine. Psychopharmacology 203:609–616. doi: 10.1007/s00213-008-1408-0 PubMedCrossRefGoogle Scholar
  48. Rodgers J, Buchanan T, Scholey AB, Heffernan TM, Ling J, Parrott A (2001) Differential effects of ecstasy and cannabis on self-reports of memory ability: a web-based study. Hum Psychopharmacol Clin 16:619–625. doi: 10.1002/hup.345 CrossRefGoogle Scholar
  49. Rose N, Rendell PG, McDaniel MA, Aberle I, Kliegel M (2010) Age and individual differences in prospective memory during a “Virtual Week”: the roles of working memory, vigilance, task regularity and cue focality. Psychol Aging 25:595–601. doi: 10.1037/a0019771 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Rude SS, Hertel PT, Jarrold W, Covich J, Hedlund S (1999) Depression-related impairments in prospective memory. Cogn Emot 13:267–276. doi: 10.1080/026999399379276 CrossRefGoogle Scholar
  51. Schnitzspahn KM, Kliegel M (2009) Age effects in prospective memory performance within older adults: the paradoxical impact of implementation intentions. Eur J Ageing 6:147–155. doi: 10.1007/s10433-009-0116-x CrossRefGoogle Scholar
  52. Tabachnick B, Fidell L (2007) Using Multivariate Statistics 5edn. Pearson, Boston, MAGoogle Scholar
  53. Tombaugh TN, Kozak J, Rees L (1999) Normative data stratified by age and education for two measures of verbal fluency: FAS and animal naming. Arch Clin Neuropsychol 14:167–177. doi: 10.1016/S0887-6177(97)00095-4 PubMedGoogle Scholar
  54. Troyer AK, Murphy KJ (2007) Memory for intentions in amnestic mild cognitive impairment: time- and event-based prospective memory. J Int Neuropsychol Soc 13:365–369. doi: 10.1017/S1355617707070452 PubMedCrossRefGoogle Scholar
  55. United Nations (2012) World drug report. United Nations Office on Drugs and Crime, New YorkGoogle Scholar
  56. Veilleux JC, Colvin PJ, Anderson J, York C, Heinz AJ (2010) A review of opioid dependence treatment: pharmacological and psychosocial interventions to treat opioid addiction. Clin Psychol Rev 30:155–166. doi: 10.1016/j.cpr.2009.10.006 PubMedCrossRefGoogle Scholar
  57. Yuan Y, Zhu Z, Shi J, Zou Z, Yuan F, Liu Y, Lee T, Weng X (2009) Gray matter density negatively correlates with duration of heroin use in young lifetime heroin-dependent individuals. Brain Cogn 71:223–228. doi: 10.1016/j.bandc.2009.08.014 PubMedCrossRefGoogle Scholar
  58. Zigmond AS, Snaith RP (1983) The Hospital and Anxiety Depression Scale. Acta Psychiatr Scand 67:361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gill Terrett
    • 1
  • Skye N. McLennan
    • 1
  • Julie D. Henry
    • 2
  • Kathryn Biernacki
    • 1
  • Kimberly Mercuri
    • 1
  • H. Valerie Curran
    • 3
  • Peter G. Rendell
    • 1
  1. 1.School of PsychologyAustralian Catholic UniversityMelbourneAustralia
  2. 2.School of PsychologyUniversity of QueenslandBrisbaneAustralia
  3. 3.Clinical Psychopharmacology UnitUniversity College LondonLondonUK

Personalised recommendations