Impact of escitalopram on vagally mediated cardiovascular function in healthy participants: implications for understanding differential age-related, treatment emergent effects

Abstract

Rationale

Black box warnings for young adults under the age of 25 years indicate that antidepressants may increase risk of suicide. While underlying mechanisms for age-related treatment effects remain unclear, vagally mediated cardiovascular function may play a key role. Decreased heart rate (HR) and an increase in its variability (HRV) improve one’s capacity to adapt to environmental stress and attenuate risk for suicide.

Objectives

Using a double blind, randomized, placebo-controlled, crossover, experimental study, we examine whether a single dose of escitalopram (20 mg) attenuates cardiovascular responses to stress under experimental conditions and determine whether age moderates these effects.

Methods

Forty-four healthy females received a single dose of escitalopram (20 mg) and placebo treatment separated by a 1-week interval (>5 half-lives). HR and high frequency HRV (HF HRV normalized units; 0.15–0.40 Hz) were measured during resting state and stress.

Results

While escitalopram attenuated the increase in HR and increased HF HRV, these moderate to large effects were only significant in participants over 25 years of age. No beneficial cardiovascular effects of escitalopram were observed in those under the age of 25.

Conclusions

Maturational differences in the development of the prefrontal cortex—a critical region in the central network of autonomic control—may underpin these differential findings. This study provides a theoretical framework on which future research on treatment-emergent suicidality in clinical populations could be based.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aberg MAI, Nyberg J, Torén K et al (2013) Cardiovascular fitness in early adulthood and future suicidal behaviour in men followed for up to 42 years. Psychol Med. doi:10.1017/S0033291713001207

    PubMed  Google Scholar 

  2. Ahn J-H, Patkar AA (2011) Escitalopram for the treatment of major depressive disorder in youth. Expert Opin Pharmacother 12:2235–2244. doi:10.1517/14656566.2011.604632

    CAS  PubMed  Article  Google Scholar 

  3. Altemus M (2006) Sex differences in depression and anxiety disorders: potential biological determinants. Horm Behav 50:534–538. doi:10.1016/j.yhbeh.2006.06.031

    PubMed  Article  Google Scholar 

  4. Anonymous (2012) Loxalate (Escitalopram oxalate) Product Information. 1-23

  5. Barbui C, Esposito E, Cipriani A (2009) Selective serotonin reuptake inhibitors and risk of suicide: a systematic review of observational studies. CMAJ 180:291–297. doi:10.1503/cmaj.081514

    PubMed Central  PubMed  Article  Google Scholar 

  6. Benes FM, Turtle M, Khan Y, Farol P (1994) Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 51:477–484

    CAS  PubMed  Article  Google Scholar 

  7. Booij L, Swenne CA, Brosschot JF et al (2006) Tryptophan depletion affects heart rate variability and impulsivity in remitted depressed patients with a history of suicidal ideation. Biol Psychiatry 60:507–514. doi:10.1016/j.biopsych.2006.02.010

    CAS  PubMed  Article  Google Scholar 

  8. Carrillo M, Ricci LA, Coppersmith GA, Melloni RH Jr (2009) The effect of increased serotonergic neurotransmission on aggression: a critical meta-analytical review of preclinical studies. Psychopharmacology 205:349–368

    CAS  PubMed  Article  Google Scholar 

  9. Casey BJ, Jones RM, Hare TA (2008) The adolescent brain. Ann N Y Acad Sci 1124:111–126. doi:10.1196/annals.1440.010

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  10. Cipriani A, Cipriani A, Santilli C, et al. (2009) Escitalopram versus other antidepressive agents for depression - Cochrane Database of Systematic Reviews - Cipriani - Wiley Online Library

  11. Cohen J (1988) Statistical power analysis for the behavioral sciencies. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  12. Cohen J (1992) Statistical power analysis. Curr Dir Psychol Sci 1:98–101

    Article  Google Scholar 

  13. Cohen MJ, Branch WB, Willis WG et al (1992) Childhood. In: Puente AE, McCaffrey RJ (eds) Handbook of neuropsychological assessment: a biopsychosocial perspective. Plenum, New York, pp 49–79

    Chapter  Google Scholar 

  14. Côté F, Fligny C, Fromes Y et al (2004) Recent advances in understanding serotonin regulation of cardiovascular function. Trends Mol Med 10:232–238. doi:10.1016/j.molmed.2004.03.007

    PubMed  Article  Google Scholar 

  15. Crews F, He J, Hodge C (2007) Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacol Biochem Behav 86:189–199. doi:10.1016/j.pbb.2006.12.001

    CAS  PubMed  Article  Google Scholar 

  16. Davey CG, Yücel M, Allen NB (2008) The emergence of depression in adolescence: development of the prefrontal cortex and the representation of reward. Neurosci Biobehav Rev 32:1–19. doi:10.1016/j.neubiorev.2007.04.016

    PubMed  Article  Google Scholar 

  17. Depue RA, Spoont MR (1986) Conceptualizing a serotonin trait. a behavioral dimension of constraint. Ann N Y Acad Sci 487:47–62

    CAS  PubMed  Article  Google Scholar 

  18. Fuster J (2008) Serotonin. In: the prefrontal cortex, 4 ed. Academic, London, pp 85–87

    Google Scholar 

  19. Gamelin FX, Berthoin S, Bosquet L (2006) Validity of the polar S810 heart rate monitor to measure R-R intervals at rest. Med Sci Sports Exerc 38:887–893. doi:10.1249/01.mss.0000218135.79476.9c

    PubMed  Article  Google Scholar 

  20. Gibbons RD, Brown CH, Hur K et al (2012) Suicidal thoughts and behavior with antidepressant treatment: reanalysis of the randomized placebo-controlled studies of fluoxetine and venlafaxine. Arch Gen Psychiatry. doi:10.1001/archgenpsychiatry.2011.2048

    Google Scholar 

  21. Hammad TA, Laughren T, Racoosin J (2006) Suicidality in pediatric patients treated with antidepressant drugs. Arch Gen Psychiatry 63:332–339. doi:10.1001/archpsyc.63.3.332

    CAS  PubMed  Article  Google Scholar 

  22. Hanson CS, Outhred T, Brunoni AR et al (2013) The impact of escitalopram on vagally mediated cardiovascular function to stress and the moderating effects of vigorous physical activity: a randomized controlled treatment study in healthy participants. Front Physiol 4:259. doi:10.3389/fphys.2013.00259

    PubMed Central  PubMed  Article  Google Scholar 

  23. Harmer CJ, Goodwin GM, Cowen PJ (2009) Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action. Br J Psychiatry 195:102–108. doi:10.1192/bjp.bp.108.051193

    PubMed  Article  Google Scholar 

  24. Hogg S, Michan L, Jessa M (2006) Prediction of anti-panic properties of escitalopram in the dorsal periaqueductal grey model of panic anxiety. Neuropharmacology 51:141–145. doi:10.1016/j.neuropharm.2006.03.009

    CAS  PubMed  Article  Google Scholar 

  25. Karanges E, McGregor IS (2011) Antidepressants and adolescent brain development. Future Neurol 6:783–808. doi:10.2217/fnl.11.51

    CAS  Article  Google Scholar 

  26. Karanges E, Li KM, Motbey C et al (2011) Differential behavioural and neurochemical outcomes from chronic paroxetine treatment in adolescent and adult rats: a model of adverse antidepressant effects in human adolescents? Int J Neuropsychopharmacol 14:491–504. doi:10.1017/S146114571100006X

    CAS  PubMed  Article  Google Scholar 

  27. Karanges EA, Kashem MA, Sarker R et al (2013) Hippocampal protein expression is differentially affected by chronic paroxetine treatment in adolescent and adult rats: a possible mechanism of “paradoxical” antidepressant responses in young persons. Front Pharmacol 4:86. doi:10.3389/fphar.2013.00086

    PubMed Central  PubMed  Article  Google Scholar 

  28. Kashdan TB, Rottenberg J (2010) Psychological flexibility as a fundamental aspect of health. Clin Psychol Rev 30:865–878. doi:10.1016/j.cpr.2010.03.001

    PubMed Central  PubMed  Article  Google Scholar 

  29. Kasper S, Sacher J, Klein N et al (2009) Differences in the dynamics of serotonin reuptake transporter occupancy may explain superior clinical efficacy of escitalopram versus citalopram. Int Clin Psychopharmacol 24:119–125. doi:10.1097/YIC.0b013e32832a8ec8

    PubMed  Article  Google Scholar 

  30. Kemp AH, Nathan PJ (2004) Acute augmentation of serotonin suppresses cardiovascular responses to emotional valence. Int J Neuropsychopharmacol 7:65–70. doi:10.1017/S1461145703003894

    CAS  PubMed  Article  Google Scholar 

  31. Kemp AH, Quintana DS (2013) The relationship between mental and physical health: insights from the study of heart rate variability. Int J Psychophysiol 89:288–296. doi:10.1016/j.ijpsycho.2013.06.018

    PubMed  Article  Google Scholar 

  32. Kemp A, Gray M, Silberstein R et al (2004) Augmentation of serotonin enhances pleasant and suppresses unpleasant cortical electrophysiological responses to visual emotional stimuli in humans. NeuroImage 22:1084–1096. doi:10.1016/j.neuroimage.2004.03.022

    PubMed  Article  Google Scholar 

  33. Khan A, Brodhead AE, Schwartz KA et al (2005) Sex differences in antidepressant response in recent antidepressant clinical trials. J Clin Psychopharmacol 25:318–324. doi:10.1097/01.jcp.0000168879.03169.ce

    PubMed  Article  Google Scholar 

  34. Kirschbaum C, Pirke KM, Hellhammer DH (1993) The “Trier Social Stress Test”—a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 28:76–81

    CAS  PubMed  Article  Google Scholar 

  35. Kroenke K, Spitzer RL, Williams JB (2001) The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med 16:606–613

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  36. Lemogne C, Thomas F, Consoli SM et al (2011) Heart rate and completed suicide: evidence from the IPC cohort study. Psychosom Med 73:731–736. doi:10.1097/PSY.0b013e3182365dc7

    PubMed  Article  Google Scholar 

  37. Li Z, Snieder H, Su S et al (2009) A longitudinal study in youth of heart rate variability at rest and in response to stress. Int J Psychophysiol 73:212–217. doi:10.1016/j.ijpsycho.2009.03.002

    PubMed Central  PubMed  Article  Google Scholar 

  38. Licht CMM, de Geus EJC, van Dyck R, Penninx BWJH (2010) Longitudinal evidence for unfavorable effects of antidepressants on heart rate variability. Biol Psychiatry 68:861–868. doi:10.1016/j.biopsych.2010.06.032

    CAS  PubMed  Article  Google Scholar 

  39. Mann JJ (1998) The neurobiology of suicide. Nat Med 4:25–30

    CAS  PubMed  Article  Google Scholar 

  40. Mann JJ (2003) Neurobiology of suicidal behaviour. Nat Rev Neurosci 4:819–828. doi:10.1038/nrn1220

    CAS  PubMed  Article  Google Scholar 

  41. Mills EJ, Chan A-W, Wu P et al (2009) Design, analysis, and presentation of crossover trials. Trials 10:27. doi:10.1186/1745-6215-10-27

    PubMed Central  PubMed  Article  Google Scholar 

  42. Moll GH, Mehnert C, Wicker M et al (2000) Age-associated changes in the densities of presynaptic monoamine transporters in different regions of the rat brain from early juvenile life to late adulthood. Brain Res Dev Brain Res 119:251–257

    CAS  PubMed  Article  Google Scholar 

  43. Murrin LC, Sanders JD, Bylund DB (2007) Comparison of the maturation of the adrenergic and serotonergic neurotransmitter systems in the brain: implications for differential drug effects on juveniles and adults. Biochem Pharmacol 73:1225–1236. doi:10.1016/j.bcp.2007.01.028

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  44. Oldehinkel AJ, Verhulst FC, Ormel J (2008) Low heart rate: a marker of stress resilience. The TRAILS study. Biol Psychiatry 63:1141–1146. doi:10.1016/j.biopsych.2007.12.006

    PubMed  Article  Google Scholar 

  45. Pohl R, Balon R, Jayaraman A et al (2003) Effect of fluoxetine, pemoline and placebo on heart period and QT variability in normal humans. J Psychosom Res 55:247–251

    PubMed  Article  Google Scholar 

  46. Puig MV, Gulledge AT (2011) Serotonin and prefrontal cortex function: neurons, networks, and circuits. Mol Neurobiol 44:449–464. doi:10.1007/s12035-011-8214-0

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  47. Quintana DS, Heathers JAJ, Kemp AH (2012) On the validity of using the Polar RS800 heart rate monitor for heart rate variability research. Eur J Appl Physiol 112:4179–4180. doi:10.1007/s00421-012-2453-2

    PubMed  Article  Google Scholar 

  48. Rao N (2007) The clinical pharmacokinetics of escitalopram. Clin Pharmacokinet 46:281–290

    CAS  PubMed  Article  Google Scholar 

  49. Robbins TW, Crockett MJ (2009) Role of central serotonin in impulsivity and compulsivity: comparative studies in experimental animals and humans. In: Müller CP, Jacobs BL (eds) Handbook of the behavioral neurobiology of serotonin. Academic, London, pp 415–427

    Google Scholar 

  50. Senn S (1994) The AB/BA crossover: past, present and future? Stat Methods Med Res 3(4):303–24

    CAS  PubMed  Article  Google Scholar 

  51. Senn S, D’Angelo G, Potvin D (2004) Carry-over in cross-over trials in bioequivalence: theoretical concerns and empirical evidence - Senn - 2004 - Pharmaceutical Statistics -Wiley Online Library. Pharmaceutical Statistics

  52. Sogaard B (2005) The pharmacokinetics of escitalopram after oral and intravenous administration of single and multiple doses to healthy subjects. J Clin Pharmacol 45:1400–1406. doi:10.1177/0091270005280860

    CAS  PubMed  Article  Google Scholar 

  53. Sowell ER, Thompson PM, Holmes CJ et al (1999) In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci 2:859–861. doi:10.1038/13154

    CAS  PubMed  Article  Google Scholar 

  54. Spitzer RL, Kroenke K, Williams JBW, Löwe B (2006) A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med 166:1092–1097. doi:10.1001/archinte.166.10.1092

    PubMed  Article  Google Scholar 

  55. Stone M, Laughren T, Jones ML et al (2009) Risk of suicidality in clinical trials of antidepressants in adults: analysis of proprietary data submitted to US Food and Drug Administration. BMJ 339:b2880–b2880. doi:10.1136/bmj.b2880

    PubMed Central  PubMed  Article  Google Scholar 

  56. Straneva-Meuse P (2004) Bupropion and paroxetine differentially influence cardiovascular and neuroendocrine responses to stress in depressed patients. J Affect Disord 79:51–61. doi:10.1016/S0165-0327(02)00352-X

    CAS  PubMed  Article  Google Scholar 

  57. Thayer JF, Hansen AL, Saus-Rose E, Johnsen BH (2009) Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self- regulation, adaptation, and health. Ann Behav Med 37:141–153. doi:10.1007/s12160-009-9101-z

    PubMed  Article  Google Scholar 

  58. Weippert M, Kumar M, Kreuzfeld S et al (2010) Comparison of three mobile devices for measuring R-R intervals and heart rate variability: Polar S810i, Suunto t6 and an ambulatory ECG system. Eur J Appl Physiol 109:779–786. doi:10.1007/s00421-010-1415-9

    PubMed  Article  Google Scholar 

  59. Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minskowski A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3–70

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the following people throughout the project: Kristi Griffiths, Sasha Saunders, Kristy-Lee Feilds, Mimi Leith, Marijke Braeken, Julie Ji, Daniel Quintana, James Heathers, Caroline Fields, Jonathan Kreiger, Sara Shahrestani, Camilla Hanson, and Matthew Beauregard. This research was supported by an Australian Research Council Discovery project grant (DP0987332), a National Health and Medical Research Council (NHMRC) project grant (464863) and a NHMRC Career Development Award (571101) awarded to AHK. The authors AHK and TO are currently supported by an International Research Professorship from the Universidade de São Paulo and an Australian Postgraduate Award, respectively.

Conflict of interest

PJN is an employee at GlaxoSmithKline Pharmaceuticals and holds shares in the company. GSM has received research support from AstraZeneca, Eli Lilly, Organon, Pfizer, Servier, and Wyeth. He has been a speaker for AstraZeneca, Eli Lilly, Janssen Cilag, Lundbeck, Pfizer, Ranbaxy, Servier, and Wyeth. He has been a consultant for AstraZeneca, Eli Lilly, Janssen Cilag, Lundbeck, and Servier. No other authors declare no potential conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrew H. Kemp.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 31 kb)

ESM 2

(DOC 49 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kemp, A.H., Outhred, T., Saunders, S. et al. Impact of escitalopram on vagally mediated cardiovascular function in healthy participants: implications for understanding differential age-related, treatment emergent effects. Psychopharmacology 231, 2281–2290 (2014). https://doi.org/10.1007/s00213-013-3374-4

Download citation

Keywords

  • Heart rate
  • Heart rate variability
  • Escitalopram
  • SSRI
  • Antidepressant
  • Stress
  • Age
  • Young adults
  • Maturation