Skip to main content

Advertisement

Log in

Glutamate, N-acetyl aspartate and psychotic symptoms in chronic ketamine users

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

An Erratum to this article was published on 11 December 2013

Abstract

Rationale

Ketamine, a non-competitive NMDA receptor antagonist, induces acute effects resembling the positive, negative and cognitive symptoms of schizophrenia. Chronic use has been suggested to lead to persistent schizophrenia-like neurobiological changes.

Objectives

This study aims to test the hypothesis that chronic ketamine users have changes in brain neurochemistry and increased subthreshold psychotic symptoms compared to matched poly-drug users.

Methods

Fifteen ketamine users and 13 poly-drug users were included in the study. Psychopathology was assessed using the Comprehensive Assessment of At-Risk Mental State. Creatine-scaled glutamate (Glu/Cr), glutamate + glutamine (Glu + Gln/Cr) and N-acetyl aspartate (NAA/Cr) were measured in three brain regions—anterior cingulate, left thalamus and left medial temporal cortex using proton magnetic resonance spectroscopy.

Results

Chronic ketamine users had higher levels of subthreshold psychotic symptoms (p < 0.005, Cohen’s d = 1.48) and lower thalamic NAA/Cr (p < 0.01, d = 1.17) compared to non-users. There were no differences in medial temporal cortex or anterior cingulate NAA/Cr or in Glu/Cr or Glu + Gln/Cr in any brain region between the two groups. In chronic ketamine users, CAARMS severity of abnormal perceptions was directly correlated with anterior cingulate Glu/Cr (p < 0.05, r = 0.61—uncorrected), but NAA/Cr was not related to any measures of psychopathology.

Conclusions

The finding of lower thalamic NAA/Cr in chronic ketamine users may be secondary to the effects of ketamine use compared to other drugs of abuse and resembles previous reports in individuals at genetic or clinical risk of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arikan MK, Kutukcu A, Karay A, Ozmen M (2009) A case of psychosis associated with left thalamic lacunar infarcts. Prog Neuropsychopharmacol Biol Psychiatry 33:729–730. doi:10.1016/j.pnpbp.2009.02.022

    Article  CAS  PubMed  Google Scholar 

  • Bartha R, Williamson PC, Drost DJ, Malla A, Carr TJ, Cortese L, Canaran G, Rylett RJ, Neufeld RWJ (1997) Measurement of glutamate and glutamine in the medial prefrontal cortex of never-treated schizophrenic patients and healthy controls by proton magnetic resonance spectroscopy. Arch Gen Psychiatry 54:959–965. doi:10.1001/archpsyc.54.10.959

    Article  CAS  PubMed  Google Scholar 

  • Behrendt RP (2006) Dysregulation of thalamic sensory “transmission” in schizophrenia: neurochemical vulnerability to hallucinations. J Psychopharmacol 20:356–372

    Article  PubMed  Google Scholar 

  • Brugger S, Davis JM, Leucht S, Stone JM (2011) Proton magnetic resonance spectroscopy and illness stage in schizophrenia—a systematic review and meta-analysis. Biol Psychiatry 69:495–503. doi:10.1016/j.biopsych.2010.10.004

    Article  PubMed  Google Scholar 

  • Carhart-Harris RL, Erritzoe D, Williams T, Stone JM, Reed LJ, Colasanti A, Tyacke RJ, Leech R, Malizia AL, Murphy K, Hobden P, Evans J, Feilding A, Wise RG, Nutt DJ (2012) Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc Natl Acad Sci U S A 109:2138–2143. doi:10.1073/pnas.1119598109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carlsson M, Carlsson A (1990) Schizophrenia: a subcortical neurotransmitter imbalance syndrome? Schizophr Bull 16:425–432

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Ernst T, Strickland T, Mehringer CM (1999) Gender effects on persistent cerebral metabolite changes in the frontal lobes of abstinent cocaine users. Am J Psychiatry 156:716–722

    CAS  PubMed  Google Scholar 

  • Clinton SM, Meador-Woodruff JH (2004) Thalamic dysfunction in schizophrenia: neurochemical, neuropathological, and in vivo imaging abnormalities. Schizophr Res 69:237–253

    Article  PubMed  Google Scholar 

  • Cowan RL, Joers JM, Dietrich MS (2009) N-Acetylaspartate (NAA) correlates inversely with cannabis use in a frontal language processing region of neocortex in MDMA (Ecstasy) polydrug users: a 3 T magnetic resonance spectroscopy study. Pharmacol Biochem Behav 92:105–110. doi:10.1016/j.pbb.2008.10.022

    Article  CAS  PubMed  Google Scholar 

  • Crail-Melendez D, Atriano-Mendieta C, Carrillo-Meza R, Ramirez-Bermudez J (2012) Schizophrenia-like psychosis associated with right lacunar thalamic infarct. Neurocase. doi:10.1080/13554794.2011.654211

    PubMed  Google Scholar 

  • Danos P, Baumann B, Bernstein HG, Franz M, Stauch R, Northoff G, Krell D, Falkai P, Bogerts B (1998) Schizophrenia and anteroventral thalamic nucleus: selective decrease of parvalbumin-immunoreactive thalamocortical projection neurons. Psychiatry Res 82:1–10

    Article  CAS  PubMed  Google Scholar 

  • de la Fuente-Sandoval C, Leon-Ortiz P, Azcarraga M, Stephano S, Favila R, Diaz-Galvis L, Alvarado-Alanis P, Ramirez-Bermudez J, Graff-Guerrero A (2013) Glutamate levels in the associative striatum before and after 4 weeks of antipsychotic treatment in first-episode psychosis: a longitudinal proton magnetic resonance spectroscopy study. JAMA Psychiatry 70:1057–1066. doi:10.1001/jamapsychiatry.2013.289

    Article  PubMed Central  PubMed  Google Scholar 

  • Demjaha A, Egerton A, Murray RM, Kapur S, Howes OD, Stone JM, McGuire PK (2013) Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biol Psychiatry. doi:10.1016/j.biopsych.2013.06.011

    PubMed  Google Scholar 

  • Egerton A, Brugger S, Raffin M, Barker GJ, Lythgoe DJ, McGuire PK, Stone JM (2012) Anterior cingulate glutamate levels related to clinical status following treatment in first-episode schizophrenia. Neuropsychopharmacology. doi:10.1038/npp.2012.113

    PubMed Central  PubMed  Google Scholar 

  • Gazdzinski S, Durazzo TC, Weiner MW, Meyerhoff DJ (2008) Are treated alcoholics representative of the entire population with alcohol use disorders? A magnetic resonance study of brain injury. Alcohol 42:67–76. doi:10.1016/j. alcohol .2008.01.002

    Article  PubMed Central  PubMed  Google Scholar 

  • Haijma SV, Van Haren N, Cahn W, Koolschijn PC, Hulshoff Pol HE, Kahn RS (2012) Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. Schizophr Bull. doi:10.1093/schbul/sbs118

    PubMed  Google Scholar 

  • Hermann D, Sartorius A, Welzel H, Walter S, Skopp G, Ende G, Mann K (2007) Dorsolateral prefrontal cortex N-acetylaspartate/total creatine (NAA/tCr) loss in male recreational cannabis users. Biol Psychiatry 61:1281–1289. doi:10.1016/j.biopsych.2006.08.027

    Article  CAS  PubMed  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Google Scholar 

  • Jakary A, Vinogradov S, Feiwell R, Deicken RF (2005) N-Acetylaspartate reductions in the mediodorsal and anterior thalamus in men with schizophrenia verified by tissue volume corrected proton MRSI. Schizophrenia Res 76:173–185

    Article  Google Scholar 

  • Jansen JF, Backes WH, Nicolay K, Kooi ME (2006) 1H MR spectroscopy of the brain: absolute quantification of metabolites. Radiology 240:318–332. doi:10.1148/radiol.2402050314

    Article  PubMed  Google Scholar 

  • Kegeles LS, Mao X, Stanford AD, Girgis R, Ojeil N, Xu X, Gil R, Slifstein M, Abi-Dargham A, Lisanby SH, Shungu DC (2012) Elevated prefrontal cortex gamma-aminobutyric acid and glutamate–glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy. Arch Gen Psychiatry 69:449–459. doi:10.1001/archgenpsychiatry.2011.1519

    Article  CAS  PubMed  Google Scholar 

  • Keilhoff G, Becker A, Grecksch G, Wolf G, Bernstein HG (2004) Repeated application of ketamine to rats induces changes in the hippocampal expression of parvalbumin, neuronal nitric oxide synthase and cFOS similar to those found in human schizophrenia. Neuroscience 126:591–598

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Lee H, Kim HJ, Bang E, Lee SH, Lee DW, Woo DC, Choi CB, Hong KS, Lee C, Choe BY (2011) In vivo and ex vivo evidence for ketamine-induced hyperglutamatergic activity in the cerebral cortex of the rat: potential relevance to schizophrenia. NMR Biomed 24:1235–1242. doi:10.1002/nbm.1681

    Article  CAS  PubMed  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214

    Article  CAS  PubMed  Google Scholar 

  • Lahti AC, Holcomb HH, Medoff DR, Tamminga CA (1995) Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport 6:869–872

    Article  CAS  PubMed  Google Scholar 

  • Lawrie SM, Whalley H, Kestelman JN, Abukmeil SS, Byrne M, Hodges A, Rimmington JE, Best JJ, Owens DG, Johnstone EC (1999) Magnetic resonance imaging of brain in people at high risk of developing schizophrenia. Lancet 353:30–33

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Tang J, Corlett PR, Wang X, Yang M, Chen H, Liu T, Chen X, Hao W, Fletcher PC (2011) Reduced dorsal prefrontal gray matter after chronic ketamine use. Biol Psychiatry 69:42–48. doi:10.1016/j.biopsych.2010.08.030

    Article  CAS  PubMed  Google Scholar 

  • Marsman A, van den Heuvel MP, Klomp DW, Kahn RS, Luijten PR, Hulshoff Pol HE (2013) Glutamate in schizophrenia: a focused review and meta-analysis of (1)H-MRS studies. Schizophr Bull 39:120–129. doi:10.1093/schbul/sbr069

    Article  PubMed Central  PubMed  Google Scholar 

  • Mittal M, Khan S (2010) Starvation causes acute psychosis due to anterior thalamic infarction. South Med J 103:701–703. doi:10.1097/SMJ.0b013e3181e1e2f3

    Article  PubMed  Google Scholar 

  • Narendran R, Frankle WG, Keefe R, Gil R, Martinez D, Slifstein M, Kegeles LS, Talbot PS, Huang Y, Hwang DR, Khenissi L, Cooper TB, Laruelle M, Abi-Dargham A (2005) Altered prefrontal dopaminergic function in chronic recreational ketamine users. Am J Psychiatry 162:2352–2359

    Article  PubMed  Google Scholar 

  • Nordahl TE, Salo R, Natsuaki Y, Galloway GP, Waters C, Moore CD, Kile S, Buonocore MH (2005) Methamphetamine users in sustained abstinence: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry 62:444–452. doi:10.1001/archpsyc.62.4.444

    Article  PubMed  Google Scholar 

  • Reneman L, Majoie CB, Flick H, den Heeten GJ (2002) Reduced N-acetylaspartate levels in the frontal cortex of 3,4-methylenedioxymethamphetamine (Ecstasy) users: preliminary results. AJNR Am J Neuroradiol 23:231–237

    PubMed  Google Scholar 

  • Reynolds GP, Harte MK (2007) The neuronal pathology of schizophrenia: molecules and mechanisms. Biochem Soc Trans 35:433–436

    Article  CAS  PubMed  Google Scholar 

  • Reynolds LM, Cochran SM, Morris BJ, Pratt JA, Reynolds GP (2005) Chronic phencyclidine administration induces schizophrenia-like changes in N-acetylaspartate and N-acetylaspartylglutamate in rat brain. Schizophr Res 73:147–152

    Article  PubMed  Google Scholar 

  • Rowland LM, Bustillo JR, Mullins PG, Jung RE, Lenroot R, Landgraf E, Barrow R, Yeo R, Lauriello J, Brooks WM (2005) Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: a 4-T proton MRS study. Am J Psychiatry 162:394–396

    Article  PubMed  Google Scholar 

  • Salo R, Nordahl TE, Natsuaki Y, Leamon MH, Galloway GP, Waters C, Moore CD, Buonocore MH (2007) Attentional control and brain metabolite levels in methamphetamine abusers. Biol Psychiatry 61:1272–1280. doi:10.1016/j.biopsych.2006.07.031

    Article  CAS  PubMed  Google Scholar 

  • Sharp FR, Tomitaka M, Bernaudin M, Tomitaka S (2001) Psychosis: pathological activation of limbic thalamocortical circuits by psychomimetics and schizophrenia? Trends Neurosci 24:330–334

    Article  CAS  PubMed  Google Scholar 

  • Steen RG, Hamer RM, Lieberman JA (2005) Measurement of brain metabolites by 1H magnetic resonance spectroscopy in patients with schizophrenia: a systematic review and meta-analysis. Neuropsychopharmacology 30:1949–1962

    Article  CAS  PubMed  Google Scholar 

  • Stone JM, Day F, Tsagaraki H, Valli I, McLean MA, Lythgoe DJ, O'Gorman RL, Barker GJ, McGuire PK (2009) Glutamate dysfunction in people with prodromal symptoms of psychosis: relationship to gray matter volume. Biol Psychiatry 66:533–539. doi:10.1016/j.biopsych.2009.05.006

    Article  CAS  PubMed  Google Scholar 

  • Stone JM, Bramon E, Pauls A, Sumich A, McGuire PK (2010) Thalamic neurochemical abnormalities in individuals with prodromal symptoms of schizophrenia—relationship to auditory event-related potentials. Psychiatry Res 183:174–176. doi:10.1016/j.pscychresns.2010.05.004

    Article  PubMed  Google Scholar 

  • Stone JM, Dietrich C, Edden R, Mehta MA, De Simoni S, Reed LJ, Krystal JH, Nutt D, Barker GJ (2012) Ketamine effects on brain GABA and glutamate levels with 1H-MRS: relationship to ketamine-induced psychopathology. Mol Psychiatry PMID: 22212598; doi:10.1038/mp.2011.171

  • Szulc A, Waszkiewicz N, Bibulowicz D, Konarzewska B, Tarasow E (2013) Proton magnetic resonance spectroscopy changes after antipsychotic treatment. Curr Med Chem 20:414–427

    CAS  PubMed  Google Scholar 

  • Taylor MJ, Tiangga ER, Ni Mhuircheartaigh R, Cowen P (2011) Lack of effect of ketamine on cortical glutamate and glutamine in healthy volunteers: a proton magnetic resonance spectroscopy study. J Psychopharmacol. doi:10.1177/0269881111405359

    Google Scholar 

  • Théberge J, Bartha R, Drost DJ, Menon RS, Malla A, Takhar J, Neufeld RW, Rogers J, Pavlosky W, Schaefer B, Densmore M, Al-Semaan Y, Williamson PC (2002) Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers. Am J Psychiatry 159:1944–1946. doi:10.1176/appi.ajp.159.11.1944

    Article  PubMed  Google Scholar 

  • Theberge J, Al-Semaan Y, Drost DJ, Malla AK, Neufeld RW, Bartha R, Manchanda R, Menon R, Densmore M, Schaefer B, Williamson PC (2004) Duration of untreated psychosis vs. N-acetylaspartate and choline in first episode schizophrenia: a 1H magnetic resonance spectroscopy study at 4.0 Tesla. Psychiatry Res 131:107–114

    Article  CAS  PubMed  Google Scholar 

  • Tibbo P, Hanstock C, Valiakalayil A, Allen P (2004) 3-T proton MRS investigation of glutamate and glutamine in adolescents at high genetic risk for schizophrenia. Am J Psychiatry 161:1116–1118

    Article  PubMed  Google Scholar 

  • Tsai G, Coyle JT (2002) Glutamatergic mechanisms in schizophrenia. Annu Rev Pharmacol Toxicol 42:165–179. doi:10.1146/annurev.pharmtox.42.082701.160735

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider FX, Geyer MA (2001) A systems model of altered consciousness: integrating natural and drug-induced psychoses. Brain Res Bull 56:495–507

    Article  CAS  PubMed  Google Scholar 

  • Wood SJ, Yücel M, Wellard RM, Harrison BJ, Clarke K, Fornito A, Velakoulis D, Pantelis C (2007) Evidence for neuronal dysfunction in the anterior cingulate of patients with schizophrenia: a proton magnetic resonance spectroscopy study at 3 T. Schizophr Res 94:328–331

    Article  PubMed  Google Scholar 

  • Yang S, Salmeron BJ, Ross TJ, Xi ZX, Stein EA, Yang Y (2009) Lower glutamate levels in rostral anterior cingulate of chronic cocaine users—A (1)H-MRS study using TE-averaged PRESS at 3 T with an optimized quantification strategy. Psychiatry Res 174:171–176. doi:10.1016/j.pscychresns.2009.05.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoo SY, Yeon S, Choi CH, Kang DH, Lee JM, Shin NY, Jung WH, Choi JS, Jang DP, Kwon JS (2009) Proton magnetic resonance spectroscopy in subjects with high genetic risk of schizophrenia: investigation of anterior cingulate, dorsolateral prefrontal cortex and thalamus. Schizophr Res 111:86–93

    Article  PubMed  Google Scholar 

  • Yung AR, Yuen HP, McGorry PD, Phillips LJ, Kelly D, Dell'Olio M, Francey SM, Cosgrave EM, Killackey E, Stanford C, Godfrey K, Buckby J (2005) Mapping the onset of psychosis: the comprehensive assessment of at-risk mental states. Aust N Z J Psychiatry 39:964–971. doi:10.1111/j.1440-1614.2005.01714.x

    Article  PubMed  Google Scholar 

Download references

Funding source

This work was supported by an MRC grant to Oliver Howes (grant code: MC_A656_5QD30).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Stone.

Additional information

Celia Morgan and Oliver D. Howes contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stone, J.M., Pepper, F., Fam, J. et al. Glutamate, N-acetyl aspartate and psychotic symptoms in chronic ketamine users. Psychopharmacology 231, 2107–2116 (2014). https://doi.org/10.1007/s00213-013-3354-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3354-8

Keywords

Navigation