Skip to main content
Log in

Activation of postsynaptic 5-HT1A receptors improve stress adaptation

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Serotonin-1A (5-HT1A) receptors modulate the stress response and have been implicated in the etiology and treatment of depression and anxiety disorders. A reduction in postsynaptic 5-HT1A receptor function in limbic areas has consistently been observed following exposure to chronic stress.

Objectives

To investigate the hypothesis that increased activation of 5-HT1A receptors in rats having reduced 5-HT function may improve stress adaptation and the behavioral sequelae commonly associated with chronic stress.

Methods

One hundred forty-four Sprague–Dawley rats received injections of para-chlorophenylalanine to partially deplete 5-HT then were given daily systemic pretreatment with the 5-HT1A receptor agonist, 8-hydroxy-2- (di-n-propylamino) tetralin (8-OH-DPAT), the antagonist, WAY 100635, or vehicle prior to either restraint stress (6 h/day for 10 daily sessions) or control conditions. Anxiety- and depressive-like behaviors were then assessed using the open field and sucrose preference tests. Protein level of hippocampal glucocorticoid receptors (GR) and mineralocorticoid receptors was detected by immunohistochemistry and brain-derived neurotrophic factor (BDNF) was determined by in situ hybridization.

Results

8-OH-DPAT pretreatment prior to stress exposure attenuated later stress-induced anxiety- and depression-like behaviors and increased GR and BDNF mRNA expression in the hippocampus relative to vehicle- and WAY 100635-pretreated, stressed animals.

Conclusion

The stress-related impairments associated with 5-HT deficiency can be improved by 8-OH-DPAT pretreatment prior to stress exposure and are associated with an augmentation of GR-like immunoreactivity and BDNF mRNA expression in the hippocampus. It suggested that selective activation of 5-HT1A receptors may be a potential treatment strategy for stress-related disorders such as anxiety and depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albert PR (2012) Transcriptional regulation of the 5-HT1A receptor: implications for mental illness. Philos Trans R Soc Lond B Biol Sci 367:2402–2415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bambico FR, Nguyen NT, Gobbi G (2009) Decline in serotonergic firing activity and desensitization of 5-HT1A autoreceptors after chronic unpredictable stress. Eur Neuropsychopharmacol 19:215–228

    Article  CAS  PubMed  Google Scholar 

  • Body S, Kheramin S, Mobini S, Ho MY, Velazquez-Martinez DN, Bradshaw CM, Szabadi E (2002) Antagonism by WAY-100635 of the effects of 8-OH-DPAT on performance on a free-operant timing schedule in intact and 5-HT-depleted rats. Behav Pharmacol 13:603–614

    Article  CAS  PubMed  Google Scholar 

  • Castren E, Rantamaki T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol 70:289–297

    Article  CAS  PubMed  Google Scholar 

  • Chalmers DT, Watson SJ (1991) Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain—a combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Res 561:51–60

    Article  CAS  PubMed  Google Scholar 

  • Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17:2295–2313

    CAS  PubMed  Google Scholar 

  • Datla KP, Curzon G (1996). Effect of p-chlorophenylalanine at moderate dosage on 5-HT and 5-HIAA concentrations in brain regions of control and p-chloroamphetamine treated rats. Neuropharmacol 5:315–20

    Google Scholar 

  • De Kloet ER (2004) Hormones and the stressed brain. Ann N Y Acad Sci 1018:1–15

    Article  PubMed  Google Scholar 

  • Fernandez SP, Gaspar P (2011) Investigating anxiety and depressive-like phenotypes in genetic mouse models of serotonin depletion. Neuropharmacology 62:144–154

    Article  PubMed  Google Scholar 

  • Ferres-Coy A, Santana N, Castane A, Cortes R, Carmona MC, Toth M, Montefeltro A, Artigas F, Bortolozzi A (2013) Acute 5-HT(1A) autoreceptor knockdown increases antidepressant responses and serotonin release in stressful conditions. Psychopharmacol (Berl) 225(1):61–74

    Article  CAS  Google Scholar 

  • First M, Gil-Ad I, Taler M, Tarasenko I, Novak N, Weizman A (2013) The effects of reboxetine treatment on depression-like behavior, brain neurotrophins, and ERK expression in rats exposed to chronic mild stress. J Mol Neurosci 50(1):88–97

    Article  CAS  PubMed  Google Scholar 

  • Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R (2002) Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416(6879):396–400

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes FS, Del Bel EA, Padovan CM, Netto SM, de Almeida RT (1993) Hippocampal 5-HT receptors and consolidation of stressful memories. Behav Brain Res 58:133–139

    Article  CAS  PubMed  Google Scholar 

  • Haleem DJ (2009) Exaggerated feedback control over 5-HT and hyperactivity in a rat model of anorexia nervosa. Appetite 52:44–50

    Article  CAS  PubMed  Google Scholar 

  • Haleem DJ (2011) Behavioral deficits and exaggerated feedback control over raphe-hippocampal serotonin neurotransmission inrestrained rats. Pharmacol Rep 63:888–897

    Article  CAS  PubMed  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, SaxenaPR HPP (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev 46:157–203

    CAS  PubMed  Google Scholar 

  • Joca SR, Zanelati T, Guimaraes FS (2006) Post stress facilitation of serotonergic, but not noradrenergic, neurotransmission in the dorsal hippocampus prevented learned helplessness development in rats. Brain Res 1087:67–74

    Article  CAS  PubMed  Google Scholar 

  • Joca SR, Ferreira FR, Guimaraes FS (2007) Modulation of stress consequences by hippocampal monoaminergic, glutamatergic and nitrergic neurotransmitter systems. Stress 10:227–249

    Article  CAS  PubMed  Google Scholar 

  • Koiv K, Harro J (2010) Differences in 5–HT1A receptor-mediated hypothermia in rats with low or high exploratory activity. Behav Pharmacol 21:765–768

    Article  CAS  PubMed  Google Scholar 

  • Kornum BR, Licht CL, Weikop P, Knudsen GM, Aznar S (2006) Central serotonin depletion affects rat brain areas differently: a qualitative and quantitative comparison between different treatment schemes. Neurosci Lett 392:129–134

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Rubalcava C (1996) Pre- or postsynaptic activity of 5-HT1A compounds in mice depends on the anxiety paradigm. Pharmacol Biochem Behav 54:677–686

    Article  CAS  PubMed  Google Scholar 

  • Luo DD, An SC, Zhang X (2008) Involvement of hippocampal serotonin and neuropeptide Y in depression induced by chronic unpredicted mild stress. Brain Res Bull 77:8–12

    Article  CAS  PubMed  Google Scholar 

  • Luttgen M, Elvander E, Madjid N, Ogren SO (2005) Analysis of the role of 5-HT1A receptors in spatial and aversive learning in the rat. Neuropharmacology 48:830–852

    Article  PubMed  Google Scholar 

  • Misane I, Ogren SO (2000) Multiple 5-HT receptors in passive avoidance: comparative studies of p-chloroamphetamine and 8-OH-DPAT. Neuropsychol Hopharmacol 22:168–190

    CAS  Google Scholar 

  • Mitchell JB, Rowe W, Boksa P, Meaney MJ (1990) Serotonin regulates type II corticosteroid receptor binding in hippocampal cell cultures. J Neurosci 10:1745–1752

    CAS  PubMed  Google Scholar 

  • Nunes-de-Souza RL, Canto-de-Souza A, Rodgers RJ (2002) Effects of intra-hippocampal infusion of WAY-100635 on plus-maze behavior in mice. Influence of site of injection and prior test experience. Brain Res 927:87–96

    Article  CAS  PubMed  Google Scholar 

  • Ohi K, Mikuni M, Takahashi K (1989) Stress adaptation and hypersensitivity in 5-HT neuronal systems after repeated foot shock. Pharmacol Biochem Behav 34:603–608

    Article  CAS  PubMed  Google Scholar 

  • Olivier B, Soudijn W, van Wijngaarden I (1999) The 5-HT1A receptor and its ligands: structure and function. Prog Drug Res 52:103–165

    CAS  PubMed  Google Scholar 

  • Pompeiano M, Palacios JM, Mengod G (1992) Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J Neurosci 12:440–453

    CAS  PubMed  Google Scholar 

  • Rainer Q, Nguyen HT, Quesseveur G, Gardier AM, David DJ, Guiard BP (2011) Functional status of somatodendritic serotonin 1A autoreceptor after long-term treatment with fluoxetine in a mouse model of anxiety/depression based on repeated corticosterone administration. Mol Pharmacol 81:106–112

    Article  PubMed  Google Scholar 

  • Richardson-Jones JW, Craige CP, Guiard BP, Stephen A, Metzger KL, Kung HF, Gardier AM, Dranovsky A, David DJ, Beck SG, Hen R, Leonardo ED (2010) 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron 65:40–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ridder S, Chourbaji S, Hellweg R, Urani A, Zacher C, Schmid W, Zink M, Hortnagl H, Flor H, Henn FA, Schutz G, Gass P (2005) Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. J Neurosci 25:6243–6250

    Article  CAS  PubMed  Google Scholar 

  • Russo-Neustadt A, Ha T, Ramirez R, Kesslak JP (2001) Physical activity-antidepressant treatment combination: impact on brain-derived neurotrophic factor and behavior in an animal model. Behav Brain Res 120:87–95

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57:925–935

    Article  CAS  PubMed  Google Scholar 

  • Schaaf MJ, De Kloet ER, Vreugdenhil E (2000) Corticosterone effects on BDNF expression in the hippocampus. Implications for memory formation. Stress 3:201–208

    Article  CAS  PubMed  Google Scholar 

  • Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22:3251–3261

    CAS  PubMed  Google Scholar 

  • Smith MA, Makino S, Kim SY, Kvetnansky R (1995a) Stress increases brain-derived neurotropic factor messenger ribonucleic acid in the hypothalamus and pituitary. Endocrinology 136:3743–3750

    CAS  PubMed  Google Scholar 

  • Smith MA, Makino S, Kvetnansky R, Post RM (1995b) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15:1768–1777

    CAS  PubMed  Google Scholar 

  • Smith MA, Zhang LX, Lyons WE, Mamounas LA (1997) Anterograde transport of endogenous brain-derived neurotrophic factor in hippocampal mossy fibers. Neuroreport 8:1829–1834

    Article  CAS  PubMed  Google Scholar 

  • Sun JD, Liu Y, Yuan YH, Li J, Chen NH (2012) Gap junction dysfunction in the prefrontal cortex induces depressive-like behaviors in rats. Neuropsychopharmacology 37:1305–1320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thoenen H (1995) Neurotrophins and neuronal plasticity. Science 270:593–598

    Article  CAS  PubMed  Google Scholar 

  • Tsuji M, Takeda H, Matsumiya T (2001) Protective effects of 5-HT1A receptor agonists against emotional changes produced by stress stimuli are related to their neuroendocrine effects. Br J Pharmacol 134:585–595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ueyama T, Kawai Y, Nemoto K, Sekimoto M, Tone S, Senba E (1997) Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci Res 28:103–110

    Article  CAS  PubMed  Google Scholar 

  • Verge D, Daval G, Patey A, Gozlan H, el Mestikawy S, Hamon M (1985) Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Eur J Pharmacol 113:463–4

    Google Scholar 

  • Wei Q, Lu XY, Liu L, Schafer G, Shieh KR, Burke S, Robinson TE, Watson SJ, Seasholtz AF, Akil H (2004) Glucocorticoid receptor overexpression in forebrain: a mouse model of increased emotional lability. Proc Natl Acad Sci U S A 101:11851–11856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wesolowska A, Paluchowska M, Chojnacka-Wojcik E (2003) Involvement of presynaptic 5-HT(1A) and benzodiazepine receptors in the anticonflict activity of 5-HT(1A) receptor antagonists. Eur J Pharmacol 471:27–34

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Li L, Tang S, Cao X, Li Z, Li W, Li C, Zhang X (2008a) Effects of serotonin depletion on the hippocampal GR/MR and BDNF expression during the stress adaptation. Behav Brain Res 195:129–138

    Article  CAS  PubMed  Google Scholar 

  • Zhou JS, Li L, Cao X, Zhang XH, Li WH, Li ZX (2008b) Effect of 5-HT and postsynaptic 5-HT1 A on the mood and recogniztion of the repeated restraint stress in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban 33:305–311

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (30800368, 30470621, and 30670751). The experiments comply with the current laws of the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingjiang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Cao, X., Mar, A.C. et al. Activation of postsynaptic 5-HT1A receptors improve stress adaptation. Psychopharmacology 231, 2067–2075 (2014). https://doi.org/10.1007/s00213-013-3350-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3350-z

Keywords

Navigation