Skip to main content
Log in

Sex-influence of nicotine and nitric oxide on motor coordination and anxiety-related neurophysiological responses

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Nitric oxide (NO) is a messenger synthesized in both the neuronal and glial populations by nitric oxide synthase type 1 (NOS1). Nicotine regulates NO production in a sex-dependent manner, both molecules being involved in motor function.

Objective

The present study evaluates sex differences in motor coordination, general movement, and anxiety-related responses resulting from both constant and continuous nicotine treatment and the genetic depletion of NOS1 activity.

Methods

Male and female mice were analyzed with the open-field and the rotarod tests. To understand the role of NO, knockout mice for NOS1 (NOS1−/−) were analyzed. Nicotine was administered continuously at a dose of 24 mg/kg/day via osmotic mini-pumps over 14 days because the behavioral effects elicited are similar to those observed with discontinuous administration.

Results

Data analyses revealed noteworthy sex differences derived from NOS1 depletion. Control NOS1−/− males exhibited an exacerbated anxiety-related response in relation to control NOS1−/− females and control wild-type (WT) males; these differences disappeared in the nicotine-administered NOS1−/− males. Additionally, nicotine administration differentially affected the horizontal movements of NOS1−/− females with respect to WT animals. NO depletion affected male but not female motor coordination improvement along the test days. However, the drug affected female motor coordination only at the end of the administration period.

Conclusions

We show for the first time that NO affects motor and anxiety behaviors in a sex-dependent manner. Moreover, the behavioral effects of constant nicotine administration are dimorphic and dependent on NO production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adriani W, Seta DD, Dessi-Fulgheri F, Farabollini F, Laviola G (2003) Altered profiles of spontaneous novelty seeking, impulsive behavior, and response to D-amphetamine in rats perinatally exposed to bisphenol A. Environ Health Perspect 111:395–401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andreescu CE, Milojkovic BA, Haasdijk ED, Kramer P, De Jong FH, Krust A, De Zeeuw CI, De Jeu MT (2007) Estradiol improves cerebellar memory formation by activating estrogen receptor beta. J Neurosci 27:10832–10839

    Article  CAS  PubMed  Google Scholar 

  • Bauer MB, Murphy S, Gebhart GF (1994) Muscarinic cholinergic stimulation of the nitric oxide-cyclic GMP signaling system in cultured rat sensory neurons. Neuroscience 62:351–359

    Article  CAS  PubMed  Google Scholar 

  • Benwell ME, Balfour DJ (1982a) Effects of chronic nicotine administration on the response and adaptation to stress. Psychopharmacology (Berlin) 76:160–162

    Article  CAS  Google Scholar 

  • Benwell ME, Balfour DJ (1982b) The effects of nicotine administration on 5-HT uptake and biosynthesis in rat brain. Eur J Pharmacol 84:71–77

    Article  CAS  PubMed  Google Scholar 

  • Besson M, Granon S, Mameli-Engvall M, Cloez-Tayarani I, Maubourguet N, Cormier A, Cazala P, David V, Changeux JP, Faure P (2007) Long-term effects of chronic nicotine exposure on brain nicotinic receptors. Proc Natl Acad Sci U S A 104:8155–8160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bindra D, Thompson WR (1953) An evaluation of defecation and urination as measures of fearfulness. J Comp Physiol Psychol 46:43–45

    Article  CAS  PubMed  Google Scholar 

  • Blanchard DC, Shepherd JK, de Padua CA, Blanchard RJ (1991) Sex effects in defensive behavior: baseline differences and drug interactions. Neurosci Biobehav Rev 15:461–468

    Article  CAS  PubMed  Google Scholar 

  • Blanchard DC, Griebel G, Blanchard RJ (1995) Gender bias in the preclinical psychopharmacology of anxiety: male models for (predominantly) female disorders. J Psychopharmacol 9:79–82

    Article  CAS  PubMed  Google Scholar 

  • Caldarone BJ, King SL, Picciotto MR (2008) Sex differences in anxiety-like behavior and locomotor activity following chronic nicotine exposure in mice. Neurosci Lett 439:187–191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castel H, Vaudry H (2001) Nitric oxide directly activates GABA(A) receptor function through a cGMP/protein kinase-independent pathway in frog pituitary melanotrophs. J Neuroendocrinol 13:695–705

    Article  CAS  PubMed  Google Scholar 

  • Chanrion B, la Mannoury CC, Bertaso F, Lerner-Natoli M, Freissmuth M, Millan MJ, Bockaert J, Marin P (2007) Physical interaction between the serotonin transporter and neuronal nitric oxide synthase underlies reciprocal modulation of their activity. Proc Natl Acad Sci U S A 104:8119–8124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiavegatto S, Dawson VL, Mamounas LA, Koliatsos VE, Dawson TM, Nelson RJ (2001) Brain serotonin dysfunction accounts for aggression in male mice lacking neuronal nitric oxide synthase. Proc Natl Acad Sci U S A 98:1277–1281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crepel F, Jaillard D (1990) Protein kinases, nitric oxide and long-term depression of synapses in the cerebellum. Neuroreport 1:133–136

    Article  CAS  PubMed  Google Scholar 

  • Dachtler J, Hardingham NR, Fox K (2012) The role of nitric oxide synthase in cortical plasticity is sex specific. J Neurosci 32:14994–14999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Damaj MI (2001) Influence of gender and sex hormones on nicotine acute pharmacological effects in mice. J Pharmacol Exp Ther 296:132–140

    CAS  PubMed  Google Scholar 

  • Damaj MI, Kao W, Martin BR (2003) Characterization of spontaneous and precipitated nicotine withdrawal in the mouse. J Pharmacol Exp Ther 307:526–534

    Article  CAS  PubMed  Google Scholar 

  • Del-Bel E, Padovan-Neto FE, Raisman-Vozari R, Lazzarini M (2011) Role of nitric oxide in motor control: implications for Parkinson's disease pathophysiology and treatment. Curr Pharm Des 17:471–488

    Article  CAS  PubMed  Google Scholar 

  • Denenberg VH, Grota LJ (1964) Social-seeking and novelty-seeking behavior as a function of differential rearing histories. J Abnorm Psychol 69:453–456

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Zhang T, Li W, Doyon WM, Dani JA (2010) Route of nicotine administration influences in vivo dopamine neuron activity: habituation, needle injection, and cannula infusion. J Mol Neurosci 40:164–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esplugues JV (2002) NO as a signalling molecule in the nervous system. Br J Pharmacol 135:1079–1095

    Article  CAS  PubMed  Google Scholar 

  • Etgen AM, Petitti N (1987) Mediation of norepinephrine-stimulated cyclic AMP accumulation by adrenergic receptors in hypothalamic and preoptic area slices: effects of estradiol. J Neurochem 49:1732–1739

    Article  CAS  PubMed  Google Scholar 

  • Fagerland MW (2012) t-tests, non-parametric tests, and large studies—a paradox of statistical practice? BMC Med Res Methodol 12:78

    Article  PubMed Central  PubMed  Google Scholar 

  • File SE, Kenny PJ, Cheeta S (2000) The role of the dorsal hippocampal serotonergic and cholinergic systems in the modulation of anxiety. Pharmacol Biochem Behav 66:65–72

    Article  CAS  PubMed  Google Scholar 

  • Fink G, Sumner BE, Rosie R, Grace O, Quinn JP (1996) Estrogen control of central neurotransmission: effect on mood, mental state, and memory. Cell Mol Neurobiol 16:325–344

    Article  CAS  PubMed  Google Scholar 

  • Fossier P, Blanchard B, Ducrocq C, Leprince C, Tauc L, Baux G (1999) Nitric oxide transforms serotonin into an inactive form and this affects neuromodulation. Neuroscience 93:597–603

    Article  CAS  PubMed  Google Scholar 

  • Freedman R, Hoffer BJ, Woodward DJ, Puro D (1977) Interaction of norepinephrine with cerebellar activity evoked by mossy and climbing fibers. Exp Neurol 55:269–288

    Article  CAS  PubMed  Google Scholar 

  • Frick KM, Gresack JE (2003) Sex differences in the behavioral response to spatial and object novelty in adult C57BL/6 mice. Behav Neurosci 117:1283–1291

    Article  PubMed  Google Scholar 

  • Gammie SC, Nelson RJ (1999) Maternal aggression is reduced in neuronal nitric oxide synthase-deficient mice. J Neurosci 19:8027–8035

    CAS  PubMed  Google Scholar 

  • Gangitano D, Salas R, Teng Y, Perez E, De BM (2009) Progesterone modulation of alpha5 nAChR subunits influences anxiety-related behavior during estrus cycle. Genes Brain Behav 8:398–406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garthwaite J (2007) Neuronal nitric oxide synthase and the serotonin transporter get harmonious. Proc Natl Acad Sci U S A 104:7739–7740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gingerich S, Krukoff TL (2005) Estrogen modulates endothelial and neuronal nitric oxide synthase expression via an estrogen receptor beta-dependent mechanism in hypothalamic slice cultures. Endocrinology 146:2933–2941

    Article  CAS  PubMed  Google Scholar 

  • Hale MW, Shekhar A, Lowry CA (2012) Stress-related serotonergic systems: implications for symptomatology of anxiety and affective disorders. Cell Mol Neurobiol 32:695–708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hall SC (1943) Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. J Comp Psychol 18:385–403

    Article  Google Scholar 

  • Hamilton KR, Perry ME, Berger SS, Grunberg NE (2010) Behavioral effects of nicotine withdrawal differ by genetic strain in male and female adolescent rats. Nicotine Tob Res 12:1236–1245

    Article  CAS  PubMed  Google Scholar 

  • Huang YY, Kandel ER, Levine A (2008) Chronic nicotine exposure induces a long-lasting and pathway-specific facilitation of LTP in the amygdala. Learn Mem 15:603–610

    Article  PubMed  Google Scholar 

  • Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    CAS  PubMed  Google Scholar 

  • Ito M (2002) Historical review of the significance of the cerebellum and the role of Purkinje cells in motor learning. Ann N Y Acad Sci 978:273–288

    Article  PubMed  Google Scholar 

  • Jacoby S, Sims RE, Hartell NA (2001) Nitric oxide is required for the induction and heterosynaptic spread of long-term potentiation in rat cerebellar slices. J Physiol 535:825–839

    Article  CAS  PubMed  Google Scholar 

  • Jessop DS (1999) Stimulatory and inhibitory regulators of the hypothalamo-pituitary-adrenocortical axis. Baillieres Best Pract Res Clin Endocrinol Metab 13:491–501

    Article  CAS  PubMed  Google Scholar 

  • Joffe H, Cohen LS (1998) Estrogen, serotonin, and mood disturbance: where is the therapeutic bridge? Biol Psychiatry 44:798–811

    Article  CAS  PubMed  Google Scholar 

  • Jonkman S, Henry B, Semenova S, Markou A (2005) Mild anxiogenic effects of nicotine withdrawal in mice. Eur J Pharmacol 516:40–45

    Article  CAS  PubMed  Google Scholar 

  • Julio-Pieper M, O'Mahony CM, Clarke G, Bravo JA, Dinan TG, Cryan JF (2012) Chronic stress-induced alterations in mouse colonic 5-HT and defecation responses are strain dependent. Stress 15:218–226

    CAS  PubMed  Google Scholar 

  • Kakegawa W, Miyoshi Y, Hamase K, Matsuda S, Matsuda K, Kohda K, Emi K, Motohashi J, Konno R, Zaitsu K, Yuzaki M (2011) D-serine regulates cerebellar LTD and motor coordination through the delta2 glutamate receptor. Nat Neurosci 14:603–611

    Article  CAS  PubMed  Google Scholar 

  • Kant L, Yilmaz O, Taskiran D, Kulali B, Furedy JJ, Demirgoren S, Pögün S (2000) Sexually dimorphic cognitive style, female sex hormones, and cortical nitric oxide. Physiol Behav 71:277–287

    Article  CAS  PubMed  Google Scholar 

  • Kanyt L, Stolerman IP, Chandler CJ, Saigusa T, Pögün S (1999) Influence of sex and female hormones on nicotine-induced changes in locomotor activity in rats. Pharmacol Biochem Behav 62:179–187

    Article  CAS  PubMed  Google Scholar 

  • Kitchen CM (2009) Nonparametric vs parametric tests of location in biomedical research. Am J Ophthalmol 147:571–572

    Article  PubMed Central  PubMed  Google Scholar 

  • Koekkoek SK, Hulscher HC, Dortland BR, Hensbroek RA, Elgersma Y, Ruigrok TJ, De Zeeuw CI (2003) Cerebellar LTD and learning-dependent timing of conditioned eyelid responses. Science 301:1736–1739

    Article  CAS  PubMed  Google Scholar 

  • Kota D, Martin BR, Robinson SE, Damaj MI (2007) Nicotine dependence and reward differ between adolescent and adult male mice. J Pharmacol Exp Ther 322:399–407

    Article  CAS  PubMed  Google Scholar 

  • Kriegsfeld LJ, Eliasson MJ, Demas GE, Blackshaw S, Dawson TM, Nelson RJ, Snyder SH (1999) Nocturnal motor coordination deficits in neuronal nitric oxide synthase knock-out mice. Neuroscience 89:311–315

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Ahn K, Jang BG, Park SH, Kang HJ, Heo JI, Ko YJ, Won MH, Tae-Cheon K, Jo SA, Kim MJ (2009) Nicotinamide reduces dopamine in postnatal hypothalamus and causes dopamine-deficient phenotype. Neurosci Lett 461:163–166

    Article  CAS  PubMed  Google Scholar 

  • Lev-Ram V, Makings LR, Keitz PF, Kao JP, Tsien RY (1995) Long-term depression in cerebellar Purkinje neurons results from coincidence of nitric oxide and depolarization-induced Ca2+ transients. Neuron 15:407–415

    Article  CAS  PubMed  Google Scholar 

  • Lev-Ram V, Nebyelul Z, Ellisman MH, Huang PL, Tsien RY (1997) Absence of cerebellar long-term depression in mice lacking neuronal nitric oxide synthase. Learn Mem 4:169–177

    Article  CAS  PubMed  Google Scholar 

  • López-Figueroa MO, Day HE, Akil H, Watson SJ (1998) Nitric oxide in the stress axis. Histol Histopathol 13:1243–1252

    PubMed  Google Scholar 

  • Lowry CA, Hale MW, Evans AK, Heerkens J, Staub DR, Gasser PJ, Shekhar A (2008) Serotonergic systems, anxiety, and affective disorder: focus on the dorsomedial part of the dorsal raphe nucleus. Ann N Y Acad Sci 1148:86–94

    Article  PubMed  Google Scholar 

  • Maier SF, Watkins LR (2005) Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci Biobehav Rev 29:829–841

    Article  CAS  PubMed  Google Scholar 

  • Matsuda S, Launey T, Mikawa S, Hirai H (2000) Disruption of AMPA receptor GluR2 clusters following long-term depression induction in cerebellar Purkinje neurons. EMBO J 19:2765–2774

    Article  CAS  PubMed  Google Scholar 

  • Matta SG, Balfour DJ, Benowitz NL, Boyd RT, Buccafusco JJ, Caggiula AR, Craig CR, Collins AC, Damaj MI, Donny EC, Gardiner PS, Grady SR, Heberlein U, Leonard SS, Levin ED, Lukas RJ, Markou A, Marks MJ, McCallum SE, Parameswaran N, Perkins KA, Picciotto MR, Quik M, Rose JE, Rothenfluh A, Schafer WR, Stolerman IP, Tyndale RF, Wehner JM, Zirger JM (2007) Guidelines on nicotine dose selection for in vivo research. Psychopharmacology (Berlin) 190:269–319

    Article  CAS  Google Scholar 

  • Meller ST, Gebhart GF (1993) Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain 52:127–136

    Article  CAS  PubMed  Google Scholar 

  • Mitsushima D, Masuda J, Kimura F (2003) Sex differences in the stress-induced release of acetylcholine in the hippocampus and corticosterone from the adrenal cortex in rats. Neuroendocrinology 78:234–240

    Article  CAS  PubMed  Google Scholar 

  • Mitsushima D, Takase K, Funabashi T, Kimura F (2008) Gonadal steroid hormones maintain the stress-induced acetylcholine release in the hippocampus: simultaneous measurements of the extracellular acetylcholine and serum corticosterone levels in the same subjects. Endocrinology 149:802–811

    Article  CAS  PubMed  Google Scholar 

  • Miyata K, Kamato T, Nishida A, Ito H, Yuki H, Yamano M, Tsutsumi R, Katsuyama Y, Honda K (1992) Role of the serotonin3 receptor in stress-induced defecation. J Pharmacol Exp Ther 261:297–303

    CAS  PubMed  Google Scholar 

  • Moises HC, Woodward DJ, Hoffer BJ, Freedman R (1979) Interactions of norepinephrine with Purkinje cell responses to putative amino acid neurotransmitters applied by microiontophoresis. Exp Neurol 64:493–515

    Article  CAS  PubMed  Google Scholar 

  • Morton DB, Bredt DS (1998) Norepinephrine increases cyclic GMP levels in cerebellar cells from neuronal nitric oxide synthase knockout mice. J Neurochem 71:440–443

    Article  CAS  PubMed  Google Scholar 

  • Palanza P (2001) Animal models of anxiety and depression: how are females different? Neurosci Biobehav Rev 25:219–233

    Article  CAS  PubMed  Google Scholar 

  • Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Google Scholar 

  • Patel JC, Rossignol E, Rice ME, Machold RP (2012) Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits. Nat Commun 3:1172

    Article  PubMed  Google Scholar 

  • Pögün S, Demirgoren S, Taskiran D, Kanit L, Yilmaz O, Koylu EO, Balkan B, London ED (2000) Nicotine modulates nitric oxide in rat brain. Eur Neuropsychopharmacol 10:463–472

    Article  PubMed  Google Scholar 

  • Roberts RE, Bain PG, Day BL, Husain M (2013) Individual differences in expert motor coordination associated with white matter microstructure in the cerebellum. Cereb Cortex 23:2282–2292

    Article  CAS  PubMed  Google Scholar 

  • Rubinow DR, Schmidt PJ, Roca CA (1998) Estrogen–serotonin interactions: implications for affective regulation. Biol Psychiatry 44:839–850

    Article  CAS  PubMed  Google Scholar 

  • Salminen O, Seppa T, Gaddnas H, Ahtee L (1999) The effects of acute nicotine on the metabolism of dopamine and the expression of Fos protein in striatal and limbic brain areas of rats during chronic nicotine infusion and its withdrawal. J Neurosci 19:8145–8151

    CAS  PubMed  Google Scholar 

  • Sanger GJ, Yoshida M, Yahyah M, Kitazumi K (2000) Increased defecation during stress or after 5-hydroxytryptophan: selective inhibition by the 5-HT(4) receptor antagonist, SB-207266. Br J Pharmacol 130:706–712

    Article  CAS  PubMed  Google Scholar 

  • Schweighofer N, Ferriol G (2000) Diffusion of nitric oxide can facilitate cerebellar learning: a simulation study. Proc Natl Acad Sci U S A 97:10661–10665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Semba J, Wakuta M, Maeda J, Suhara T (2004) Nicotine withdrawal induces subsensitivity of hypothalamic–pituitary–adrenal axis to stress in rats: implications for precipitation of depression during smoking cessation. Psychoneuroendocrinology 29:215–226

    Article  CAS  PubMed  Google Scholar 

  • Seth P, Cheeta S, Tucci S, File SE (2002) Nicotinic–serotonergic interactions in brain and behaviour. Pharmacol Biochem Behav 71:795–805

    Article  CAS  PubMed  Google Scholar 

  • Shibuki K, Okada D (1991) Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature 349:326–328

    Article  CAS  PubMed  Google Scholar 

  • Shih CD (2009) Activation of estrogen receptor beta-dependent nitric oxide signaling mediates the hypotensive effects of estrogen in the rostral ventrolateral medulla of anesthetized rats. J Biomed Sci 16:60

    Article  PubMed  Google Scholar 

  • Shim I, Kim HT, Kim YH, Chun BG, Hahm DH, Lee EH, Kim SE, Lee HJ (2002) Role of nitric oxide synthase inhibitors and NMDA receptor antagonist in nicotine-induced behavioral sensitization in the rat. Eur J Pharmacol 443:119–124

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui A, Gilmore DP (1988) Regional differences in the catecholamine content of the rat brain: effects of neonatal castration and androgenization. Acta Endocrinol (Copenh) 118:483–494

    CAS  Google Scholar 

  • Siegelbaum SA, Kandel ER (1991) Learning-related synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 1:113–120

    Article  CAS  PubMed  Google Scholar 

  • Simpkins JW, Kalra PS, Kalra SP (1980) Temporal alterations in luteinizing hormone-releasing hormone concentrations in several discrete brain regions: effects of estrogen-progesterone and norepinephrine synthesis inhibition. Endocrinology 107:573–577

    Article  CAS  PubMed  Google Scholar 

  • Suemaru K, Yasuda K, Cui R, Li B, Umeda K, Amano M, Mitsuhashi H, Takeuchi N, Inoue T, Gomita Y, Araki H (2006) Antidepressant-like action of nicotine in forced swimming test and brain serotonin in mice. Physiol Behav 88:545–549

    Article  CAS  PubMed  Google Scholar 

  • Swinny JD, van der Want JJ, Gramsbergen A (2005) Cerebellar development and plasticity: perspectives for motor coordination strategies, for motor skills, and for therapy. Neural Plast 12:153–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanda K, Nishi A, Matsuo N, Nakanishi K, Yamasaki N, Sugimoto T, Toyama K, Takao K, Miyakawa T (2009) Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice. Mol Brain 2:19

    Article  PubMed Central  PubMed  Google Scholar 

  • Ter Horst GJ, Luiten PG, Kuipers F (1984) Descending pathways from hypothalamus to dorsal motor vagus and ambiguus nuclei in the rat. J Auton Nerv Syst 11:59–75

    Article  PubMed  Google Scholar 

  • Thach WT (1998) A role for the cerebellum in learning movement coordination. Neurobiol Learn Mem 70:177–188

    Article  CAS  PubMed  Google Scholar 

  • Vickers AJ (2005) Parametric versus non-parametric statistics in the analysis of randomized trials with non-normally distributed data. BMC Med Res Methodol 5:35

    Article  PubMed Central  PubMed  Google Scholar 

  • Wayner MJ (1970) Motor control functions of the lateral hypothalamus and adjunctive behavior. Physiol Behav 5:1319–1325

    Article  CAS  PubMed  Google Scholar 

  • Weitzdoerfer R, Hoeger H, Engidawork E, Engelmann M, Singewald N, Lubec G, Lubec B (2004) Neuronal nitric oxide synthase knock-out mice show impaired cognitive performance. Nitric Oxide 10:130–140

    Article  CAS  PubMed  Google Scholar 

  • Weruaga E, Balkan B, Koylu EO, Pögün S, Alonso JR (2002) Effects of chronic nicotine administration on nitric oxide synthase expression and activity in rat brain. J Neurosci Res 67:689–697

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz O, Kanit L, Okur BE, Pögün S (1997) Effects of nicotine on active avoidance learning in rats: sex differences. Behav Pharmacol 8:253–260

    CAS  PubMed  Google Scholar 

  • Yu G, Chen H, Zhao W, Matta SG, Sharp BM (2008) Nicotine self-administration differentially regulates hypothalamic corticotropin-releasing factor and arginine vasopressin mRNAs and facilitates stress-induced neuronal activation. J Neurosci 28:2773–2782

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Zhu DY (2009) Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide 20:223–230

    Article  CAS  PubMed  Google Scholar 

  • Zohar J, Westenberg HG (2000) Anxiety disorders: a review of tricyclic antidepressants and selective serotonin reuptake inhibitors. Acta Psychiatr Scand Suppl 403:39–49

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministerio de Ciencia y Tecnología (BFU2010-18284), the Ministerio de Sanidad, Política Social e Igualdad (Plan Nacional Sobre Drogas), and the Junta de Castilla y León (Centre for Regenerative Medicine and Cell Therapy of Castile and León).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Weruaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz-Castañeda, R., Díaz, D., Ávila-Zarza, C.A. et al. Sex-influence of nicotine and nitric oxide on motor coordination and anxiety-related neurophysiological responses. Psychopharmacology 231, 695–706 (2014). https://doi.org/10.1007/s00213-013-3284-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3284-5

Keywords

Navigation