Skip to main content
Log in

Critical role of nitric oxide in the modulation of prepulse inhibition in Swiss mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Nitric oxide (NO) modulates the dopamine uptake and release processes and appears to be implicated in dopamine-related pathologies, such as schizophrenia. However, it is unclear whether there is excess or deficient NO synthesis in schizophrenia pathophysiology. Analyses of the intracellular pathways downstream of NO system activation have identified the cyclic nucleotide cyclic guanosine monophosphate (cGMP) as a possible target for drug development. Defects in the sensorimotor gating of the neural mechanism underlying the integration and processing of sensory information have been detected across species through prepulse inhibition (PPI).

Objectives

The aim of this study was to investigate the effects of NO/cGMP increase on sensorimotor gating modulation during dopamine hyperfunction.

Methods

Mice were treated with NO donors and subjected to the PPI test. Treatment with the NO donor sodium nitroprusside was preceded by pretreatment with a soluble guanylate cyclase (sGC) inhibitor. Additionally, the mice were treated with NO donors and phosphodiesterases inhibitors prior to amphetamine treatment.

Results

Pretreatment with the NO donors enhanced the PPI response and attenuated the amphetamine-disruptive effects on the PPI. The sGC inhibitor did not modify the sodium nitroprusside effects. Additionally, the cGMP increase induced by a specific phosphodiesterase inhibitor did not modify the amphetamine-disruptive effect.

Conclusions

This study provides the first demonstration that an increase in NO can improve the PPI response and block the amphetamine-disruptive effects on the PPI response. Our data are consistent with recent clinical results. However, these effects do not appear to be related to an increase in cGMP levels, and further investigation is thus required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akhondzadeh S, Ghayyoumi R, Rezaei F, Salehi B, Modabbernia AH, Maroufi A, Esfandiari GR, Naderi M, Ghebleh F, Tabrizi M, Rezazadeh SA (2011) Sildenafil adjunctive therapy to risperidone in the treatment of the negative symptoms of schizophrenia: a double-blind randomized placebo-controlled trial. Psychopharmacology (Berl) 213:809–815

    Article  CAS  Google Scholar 

  • Amann LC, Gandal MJ, Halene TB, Ehrlichman RS, White SL, McCarren HS, Siegel SJ (2010) Mouse behavioral endophenotypes for schizophrenia. Brain Res Bull 83:147–161

    Article  PubMed  Google Scholar 

  • Baba H, Suzuki T, Arai H, Emson PC (2004) Expression of nNOS and soluble guanylate cyclase in schizophrenic brain. Neuroreport 15:677–680

    Article  CAS  PubMed  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Bogerts B, Keilhoff G (2005) The many faces of nitric oxide in schizophrenia. A review. Schizophr Res 78:69–86

    Article  PubMed  Google Scholar 

  • Bernstein HG, Keilhoff G, Steiner J, Dobrowolny H, Bogerts B (2011) Nitric oxide and schizophrenia: present knowledge and emerging concepts of therapy. CNS Neurol Disord Drug Targets 10:792–807

    Article  CAS  PubMed  Google Scholar 

  • Bird DC, Bujas-Bobanovic M, Robertson HA, Dursun SM (2001) Lack of phencyclidine-induced effects in mice with reduced neuronal nitric oxide synthase. Psychopharmacology (Berl) 155:299–309

    Article  CAS  Google Scholar 

  • Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry 47:181–188

    Article  CAS  PubMed  Google Scholar 

  • Braff DL, Geyer MA, Light GA, Sprock J, Perry W, Cadenhead KS, Swerdlow NR (2001a) Impact of prepulse characteristics on the detection of sensorimotor gating deficits in schizophrenia. Schizophr Res 49:171–178

    Article  CAS  PubMed  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001b) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156:234–258

    Article  CAS  Google Scholar 

  • Broersen LM, Feldon J, Weiner I (1999) Dissociative effects of apomorphine infusions into the medial prefrontal cortex of rats on latent inhibition, prepulse inhibition and amphetamine-induced locomotion. Neuroscience 94:39–46

    Article  CAS  PubMed  Google Scholar 

  • Bujas-Bobanovic M, Bird DC, Robertson HA, Dursun SM (2000) Blockade of phencyclidine-induced effects by a nitric oxide donor. Br J Pharmacol 130:1005–1012

    Article  CAS  PubMed  Google Scholar 

  • Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1:179–186

    Article  CAS  PubMed  Google Scholar 

  • Coskran TM, Morton D, Menniti FS, Adamowicz WO, Kleiman RJ, Ryan AM, Strick CA, Schmidt CJ, Stephenson DT (2006) Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species. J Histochem Cytochem 54:1205–1213

    Article  CAS  PubMed  Google Scholar 

  • Coyle JT (2006) Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 26:365–384

    Article  CAS  PubMed  Google Scholar 

  • Crofton KM (1990) Reflex modification and the detection of toxicant-induced auditory dysfunction. Neurotoxicol Teratol. 12:461–468

    Google Scholar 

  • de Lima TC, Davis M (1995) Involvement of cyclic AMP at the level of the nucleus reticularis pontis caudalis in the acoustic startle response. Brain Res 700:59–69

    Article  PubMed  Google Scholar 

  • Depoortere R, Perrault G, Sanger DJ (1997) Potentiation of prepulse inhibition of the startle reflex in rats: pharmacological evaluation of the procedure as a model for detecting antipsychotic activity. Psychopharmacology (Berl) 132:366–374

    Article  CAS  Google Scholar 

  • Derbyshire ER, Marletta MA (2012) Structure and regulation of soluble guanylate cyclase. Annu Rev Biochem 81:533–559

    Article  CAS  PubMed  Google Scholar 

  • Deutsch SI, Rosse RB, Schwartz BL, Fay-McCarthy M, Rosenberg PB, Fearing K (1997) Methylene blue adjuvant therapy of schizophrenia. Clin Neuropharmacol. 20:357–363

    Article  CAS  PubMed  Google Scholar 

  • Domek-Łopacińska K, Strosznajder JB (2008) The effect of selective inhibition of cyclic GMP hydrolyzing phosphodiesterases 2 and 5 on learning and memory processes and nitric oxide synthase activity in brain during aging. Brain Res 1216:68–77

    Article  PubMed  Google Scholar 

  • Ellenbroek BA, Budde S, Cools AR (1996) Prepulse inhibition and latent inhibition: the role of dopamine in the medial prefrontal cortex. Neuroscience 75:535–542

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 156:117–154

    Article  CAS  Google Scholar 

  • Geyer MA, McIlwain KL, Paylor R (2002) Mouse genetic models for prepulse inhibition: an early review. Mol Psychiatry 7:1039–1053

    Google Scholar 

  • Goff DC, Cather C, Freudenreich O, Henderson DC, Evins AE, Culhane MA, et al. (2009) A placebo-controlled study of sildenafil effects on cognition in schizophrenia. Psychopharmacology (Berl) 202: 411–17

    Google Scholar 

  • Gould TJ, Bizily SP, Tokarczyk J, Kelly MP, Siegel SJ, Kanes SJ, Abel T (2004) Sensorimotor gating deficits in transgenic mice expressing a constitutively active form of Gs alpha. Neuropsychopharmacology 29:494–501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gourgiotis I, Kampouri NG, Koulouri V, Lempesis IG, Prasinou MD, Georgiadou G, Pitsikas N (2012) Nitric oxide modulates apomorphine-induced recognition memory deficits in rats. Pharmacol Biochem Behav 102:507–514

    Article  CAS  PubMed  Google Scholar 

  • Graham FK (1975) The more or less startling effects of weak pre-stimulation. Psychophysiology 12:238–248

    Google Scholar 

  • Grauer SM, Pulito VL, Navarra RL, Kelly MP, Kelley C, Graf R, Langen B, Logue S, Brennan J, Jiang L, Charych E, Egerland U, Liu F, Marquis KL, Malamas M, Hage T, Comery TA, Brandon NJ (2009) Phosphodiesterase 10A inhibitor activity in preclinical models of the positive, cognitive, and negative symptoms of schizophrenia. J Pharmacol Exp Ther 331:574–590

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM (2000) The basal ganglia. Curr Biol 10:R509–R511

    Article  CAS  PubMed  Google Scholar 

  • Halene TB, Siegel SJ (2008) Antipsychotic-like properties of phosphodiesterase 4 inhibitors: evaluation of 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (RO-20-1724) with auditory event-related potentials and prepulse inhibition of startle. J Pharmacol Exp Ther 326:230–239

    Article  CAS  PubMed  Google Scholar 

  • Hallak JE, Maia-de-Oliveira JP, Abrao J, Evora PR, Zuardi AW, Crippa JA, Belmonte-de-Abreu P, Baker GB, Dursun SM (2013) Rapid improvement of acute schizophrenia symptoms after intravenous sodium nitroprusside: a randomized, double-blind, placebo-controlled trial. JAMA Psychiatry 70:668–676

    Article  CAS  PubMed  Google Scholar 

  • Hartung H, Threlfell S, Cragg SJ (2011) Nitric oxide donors enhance the frequency dependence of dopamine release in nucleus accumbens. Neuropsychopharmacology 36: 1811-22

    Google Scholar 

  • Harvey BH, Nel A (2003) Role of aging and striatal nitric oxide synthase activity in an animal model of tardive dyskinesia. Brain Res Bull 61:407–416

    Article  CAS  PubMed  Google Scholar 

  • Hosseini-Sharifabad A, Ghahremani MH, Sabzevari O, Naghdi N, Abdollahi M, Beyer C, Bollen E, Prickaerts J, Roghani A, Sharifzadeh M (2012) Effects of protein kinase A and G inhibitors on hippocampal cholinergic markers expressions in rolipram- and sildenafil-induced spatial memory improvement. Pharmacol Biochem Behav 101:311–319

    Article  CAS  PubMed  Google Scholar 

  • Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 35:549–562

    Article  PubMed  Google Scholar 

  • Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, Kapur S (2012) The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch Gen Psychiatry 69:776–786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Issy AC, Salum C, Del Bel EA (2009) Nitric oxide modulation of methylphenidate-induced disruption of prepulse inhibition in Swiss mice. Behav Brain Res 205:475–481

    Article  CAS  PubMed  Google Scholar 

  • Issy AC, Lazzarini M, Szawka RE, Carolino RO, Anselmo-Franci JA, Del Bel EA (2011) Nitric oxide synthase inhibitors improve prepulse inhibition responses of Wistar rats. Behav Brain Res 217:416–423

    Article  CAS  PubMed  Google Scholar 

  • Johansson C, Jackson DM, Svensson L (1997) Nitric oxide synthase inhibition blocks phencyclidine-induced behavioural effects on prepulse inhibition and locomotor activity in the rat. Psychopharmacology (Berl) 131:167–173

    Article  CAS  Google Scholar 

  • Kanes SJ, Tokarczyk J, Siegel SJ, Bilker W, Abel T, Kelly MP (2007) Rolipram: a specific phosphodiesterase 4 inhibitor with potential antipsychotic activity. Neuroscience 144:239–246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kapur S, Mamo D (2003) Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry 27:1081–1090

    Article  CAS  PubMed  Google Scholar 

  • Kapur S, Seeman P (2001) Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics?: a new hypothesis. Am J Psychiatry 158:360–369

    Article  CAS  PubMed  Google Scholar 

  • Karatinos J, Rosse RB, Deutsch SI (1995) The nitric oxide pathway:potential implications for treatment of neuropsychiatric disorders. Clin Neuropharmacol 18:482–499

    Google Scholar 

  • Kehne JH, Boulis NM, Davis M (1991) Effects of the phosphodiesterase inhibitor rolipram on the acoustic startle response in rats. Psychopharmacology (Berl) 105:27–36

    Article  CAS  Google Scholar 

  • Kelly MP, Stein JM, Vecsey CG, Favilla C, Yang X, Bizily SF, Esposito MF, Wand G, Kanes SJ, Abel T (2009) Developmental etiology for neuroanatomical and cognitive deficits in mice overexpressing Galphas, a G-protein subunit genetically linked to schizophrenia. Mol Psychiatry 14(398–415):347

    Article  Google Scholar 

  • Kiss JP, Zsilla G, Vizi ES (2004) Inhibitory effect of nitric oxide on dopamine transporters: interneuronal communication without receptors. Neurochem Int 45:485–489

    Article  CAS  PubMed  Google Scholar 

  • Klamer D, Engel JA, Svensson L (2001) The nitric oxide synthase inhibitor, L-NAME, block phencyclidine-induced disruption of prepulse inhibition in mice. Psychopharmacology (Berl) 156:182–186

    Article  CAS  Google Scholar 

  • Klamer D, Engel JA, Svensson L (2004) The neuronal selective nitric oxide synthase inhibitor, Nomega-propyl-L-arginine, blocks the effects of phencyclidine on prepulse inhibition and locomotor activity in mice. Eur J Pharmacol 503:103–107

    Article  CAS  PubMed  Google Scholar 

  • Klamer D, Pålsson E, Fejgin K, Zhang J, Engel JA, Svensson L (2005) Activation of a nitric-oxide-sensitive cAMP pathway with phencyclidine: elevated hippocampal cAMP levels are temporally associated with deficits in prepulse inhibition. Psychopharmacology (Berl) 179:479–488

    Article  CAS  Google Scholar 

  • Kleppisch T, Feil R (2009) cGMP signalling in the mammalian brain: role in synaptic plasticity and behaviour. Handb Exp Pharmacol 549–579

  • Koch M (1999) The neurobiology of startle. Prog Neurobiol 59:107–128

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Bubser M (1994) Deficient sensorimotor gating after 6-hydroxydopamine lesion of the rat medial prefrontal cortex is reversed by haloperidol. Eur J Neurosci 6:1837–1845

    Article  CAS  PubMed  Google Scholar 

  • Laruelle M, Kegeles LS, Abi-Dargham A (2003) Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann N Y Acad Sci 1003:138–158

    Article  CAS  PubMed  Google Scholar 

  • Lau YS, Petroske E, Meredith GE, Wang JQ (2003) Elevated neuronal nitric oxide synthase expression in chronic haloperidol-treated rats. Neuropharmacology 45:986–994

    Article  CAS  PubMed  Google Scholar 

  • Lin CH, Lane HY, Tsai GE (2012) Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacol Biochem Behav 100:665–677

    Article  CAS  PubMed  Google Scholar 

  • Maxwell CR, Kanes SJ, Abel T, Siegel SJ (2004) Phosphodiesterase inhibitors: a novel mechanism for receptor-independent antipsychotic medications. Neuroscience 129:101–107

    Article  CAS  PubMed  Google Scholar 

  • Negrete-Díaz JV, Baltazar-Gaytán E, Bringas ME, Vazquez-Roque RA, Newton S, Aguilar-Alonso P, León-Chávez BA, Flores G (2010) Neonatal ventral hippocampus lesion induces increase in nitric oxide [NO] levels which is attenuated by subchronic haloperidol treatment. Synapse 64:941–947

    Article  PubMed  Google Scholar 

  • Padovan-Neto FE, Echeverry MB, Chiavegatto S, Del-Bel E (2011) Nitric oxide synthase inhibitor improves de novo and long-term l-DOPA-induced dyskinesia in hemiparkinsonian rats. Front Syst Neurosci 5:40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pereira M, Siba IP, Chioca LR, Correia D, Vital MA, Pizzolatti MG, Santos AR, Andreatini R (2011) Myricitrin, a nitric oxide and protein kinase C inhibitor, exerts antipsychotic-like effects in animal models. Prog Neuropsychopharmacol Biol Psychiatry 35:1636–1644

    Article  CAS  PubMed  Google Scholar 

  • Picconi B, Bagetta V, Ghiglieri V, Paillè V, Di Filippo M, Pendolino V, Tozzi A, Giampà C, Fusco FR, Sgobio C, Calabresi P (2011) Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain 134:375–387

    Article  PubMed  Google Scholar 

  • Pycock CJ, Kerwin RW, Carter CJ (1980) Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats. Nature 286:74–76

    Article  CAS  PubMed  Google Scholar 

  • Ramirez J, Garnica R, Boll MC, Montes S, Rios C (2004) Low concentration of nitrite and nitrate in the cerebrospinal fluid from schizophrenic patients: a pilot study. Schizophr Res 68:357–361

    Article  PubMed  Google Scholar 

  • Reif A, Herterich S, Strobel A, Ehlis AC, Saur D, Jacob CP, Wienker T, Töpner T, Fritzen S, Walter U, Schmitt A, Fallgatter AJ, Lesch KP (2006) A neuronal nitric oxide synthase (NOS-I) haplotype associated with schizophrenia modifies prefrontal cortex function. Mol Psychiatry 11:286–300

    Article  CAS  PubMed  Google Scholar 

  • Rutten K, Van Donkelaar EL, Ferrington L, Blokland A, Bollen E, Steinbusch HW, Kelly PA, Prickaerts JH (2009) Phosphodiesterase inhibitors enhance object memory independent of cerebral blood flow and glucose utilization in rats. Neuropsychopharmacology 34:1914–1925

    Article  CAS  PubMed  Google Scholar 

  • Salum C, Guimarães FS, Brandão ML, Del Bel EA (2006) Dopamine and nitric oxide interaction on the modulation of prepulse inhibition of the acoustic startle response in the Wistar rat. Psychopharmacology (Berl) 185:133–141

    Article  CAS  Google Scholar 

  • Salum C, Raisman-Vozari R, Michel PP, Gomes MZ, Mitkovski M, Ferrario JE, Ginestet L, Del Bel EA (2008) Modulation of dopamine uptake by nitric oxide in cultured mesencephalic neurons. Brain Res 1198:27–33

    Article  CAS  PubMed  Google Scholar 

  • Salum C, Issy AC, Brandão ML, Guimarães FS, Bel EA (2011) Nitric oxide modulates dopaminergic regulation of prepulse inhibition in the basolateral amygdala. J Psychopharmacol 25:1639–1648

    Article  CAS  PubMed  Google Scholar 

  • Scatton B, Worms P, Lloyd KG, Bartholini G (1982) Cortical modulation of striatal function. Brain Res 232:331–343

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CJ, Chapin DS, Cianfrogna J, Corman ML, Hajos M, Harms JF, Hoffman WE, Lebel LA, McCarthy SA, Nelson FR, Proulx-LaFrance C, Majchrzak MJ, Ramirez AD, Schmidt K, Seymour PA, Siuciak JA, Tingley FD, Williams RD, Verhoest PR, Menniti FS (2008) Preclinical characterization of selective phosphodiesterase 10A inhibitors: a new therapeutic approach to the treatment of schizophrenia. J Pharmacol Exp Ther 325:681–690

    Article  CAS  PubMed  Google Scholar 

  • Siuciak JA (2008) The role of phosphodiesterases in schizophrenia: therapeutic implications. CNS Drugs 22:983–993

    Article  CAS  PubMed  Google Scholar 

  • Siuciak JA, Chapin DS, Harms JF, Lebel LA, McCarthy SA, Chambers L, Shrikhande A, Wong S, Menniti FS, Schmidt CJ (2006) Inhibition of the striatum-enriched phosphodiesterase PDE10A: a novel approach to the treatment of psychosis. Neuropharmacology 51:386–396

    Article  CAS  PubMed  Google Scholar 

  • Soderling SH, Bayuga SJ, Beavo JA (1999) Isolation and characterization of a dual-substrate phosphodiesterase gene family: PDE10A. Proc Natl Acad Sci U S A 96:7071–7076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strick CA, James LC, Fox CB, Seeger TF, Menniti FS, Schmidt CJ (2010) Alterations in gene regulation following inhibition of the striatum-enriched phosphodiesterase, PDE10A. Neuropharmacology 58:444–451

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Benbow CH, Zisook S, Geyer MA, Braff DL (1993) A preliminary assessment of sensorimotor gating in patients with obsessive compulsive disorder. Biol Psychiatry 33: 298-301

    Google Scholar 

  • Swerdlow NR, Paulsen J, Braff DL, Butters N, Geyer MA, Swenson MR (1995) Impaired prepulse inhibition of acoustic and tactile startle response in patients with Huntington's Disease. J Neurol Neurosur Psychiatry 58:192–200

    Google Scholar 

  • Swerdlow NR, Braff DL, Geyer MA (2000) Animal models of deficient sensorimotor gating: what we know, what we think we know, and what we hope to know soon. Behav Pharmacol 11:185–204

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology (Berl) 156:194–215

    Article  CAS  Google Scholar 

  • Taneli F, Pirildar S, Akdeniz F, Uyanik BS, Ari Z (2004) Serum nitric oxide metabolite levels and the effect of antipsychotic therapy in schizophrenia. Arch Med Res 35:401–405

    Article  CAS  PubMed  Google Scholar 

  • Trabace L, Kendrick KM, Castrignanò S, Colaianna M, De Giorgi A, Schiavone S, Lanni C, Cuomo V, Govoni S (2007) Soluble amyloid beta1-42 reduces dopamine levels in rat prefrontal cortex: relationship to nitric oxide. Neuroscience 147:652–663

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Breier M, Ko D, Thangaraj N, Marzan DE, Swerdlow NR (2009) Evaluating the antipsychotic profile of the preferential PDE10A inhibitor, papaverine. Psychopharmacology (Berl) 203:723–735

    Article  CAS  Google Scholar 

  • West AR, Galloway MP, Grace AA (2002) Regulation of striatal dopamine neurotransmission by nitric oxide: effector pathways and signaling mechanisms. Synapse 44:227–245

    Article  CAS  PubMed  Google Scholar 

  • Wiley JL, Golden KM, Bowen SE (1997) Effects of modulation of nitric oxide on acoustic startle responding and prepulse inhibition in rats. Eur J Pharmacol 328:125–130

    Article  CAS  PubMed  Google Scholar 

  • Wratten NS, Memoli H, Huang Y, Dulencin AM, Matteson PG, Cornacchia MA, Azaro MA, Messenger J, Hayter JE, Bassett AS, Buyske S, Millonig JH, Vieland VJ, Brzustowicz LM (2009) Identification of a schizophrenia-associated functional noncoding variant in NOS1AP. Am J Psychiatry 166:434–441

    Article  PubMed Central  PubMed  Google Scholar 

  • Xie Z, Adamowicz WO, Eldred WD, Jakowski AB, Kleiman RJ, Morton DG, Stephenson DT, Strick CA, Williams RD, Menniti FS (2006) Cellular and subcellular localization of PDE10A, a striatum-enriched phosphodiesterase. Neuroscience 139:597–607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Célia Aparecida da Silva for the technical support. The equipment and drugs used in this work were acquired from FAPESP, CNPq, CAPES, Brazil. The experiments presented in this manuscript comply with the current Brazilian laws. This work was supported by FAPESP.

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine A. Del-Bel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Issy, A.C., Pedrazzi, J.F.C., Yoneyama, B.H. et al. Critical role of nitric oxide in the modulation of prepulse inhibition in Swiss mice. Psychopharmacology 231, 663–672 (2014). https://doi.org/10.1007/s00213-013-3277-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3277-4

Keywords

Navigation