Monoaminergic modulation of behavioural and electrophysiological indices of error processing

Abstract

Rationale

Error processing is a critical executive function that is impaired in a large number of clinical populations. Although the neural underpinnings of this function have been investigated for decades and critical error-related components in the human electroencephalogram (EEG), such as the error-related negativity (ERN) and the error positivity (Pe), have been characterised, our understanding of the relative contributions of key neurotransmitters to the generation of these components remains limited.

Objectives

The current study sought to determine the effects of pharmacological manipulation of the dopamine, noradrenaline and serotonin neurotransmitter systems on key behavioural and event-related potential correlates of error processing.

Methods

A randomised, double-blinded, placebo-controlled, crossover design was employed. Monoamine levels were manipulated using the clinically relevant drugs methylphenidate, atomoxetine and citalopram, in comparison to placebo. Under each of the four drug conditions, participants underwent EEG recording while performing a flanker task.

Results

Only methylphenidate produced significant improvement in performance accuracy, which was without concomitant slowing of reaction time. Methylphenidate also increased the amplitude of an early electrophysiological index of error processing, the ERN. Citalopram increased the amplitude of the correct-response negativity, another component associated with response processing.

Conclusions

The effects of methylphenidate in this study are consistent with theoretical accounts positing catecholamine modulation of error monitoring. Our data suggest that enhancing catecholamine function has the potential to remediate the error-monitoring deficits that are seen in a wide range of psychiatric conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Agam Y, Hamalainen MS, Lee AK, Dyckman KA, Friedman JS, Isom M, Makris N, Manoach DS (2011) Multimodal neuroimaging dissociates hemodynamic and electrophysiological correlates of error processing. Proc Natl Acad Sci U S A 108:17556–17561

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  2. Arnsten AF (2009) Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci 10:410–422

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  3. Arnsten AF, Dudley AG (2005) Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: relevance to therapeutic effects in attention deficit hyperactivity disorder. Behav Brain Funct 1:2

    PubMed Central  PubMed  Article  Google Scholar 

  4. Aston-Jones G, Cohen JD (2005) Adaptive gain and the role of the locus coeruleus–norepinephrine system in optimal performance. J Comp Neurol 493:99–110

    CAS  PubMed  Article  Google Scholar 

  5. Bari A, Aston-Jones G (2013) Atomoxetine modulates spontaneous and sensory-evoked discharge of locus coeruleus noradrenergic neurons. Neuropharmacology 64:53–64

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  6. Barnes JJ, Dean AJ, Nandam LS, O'Connell RG, Bellgrove MA (2011) The molecular genetics of executive function: role of monoamine system genes. Biol Psychiatry 69:e127–e143

    CAS  PubMed  Article  Google Scholar 

  7. Berridge CW, Devilbiss DM, Andrzejewski ME, Arnsten AF, Kelley AE, Schmeichel B, Hamilton C, Spencer RC (2006) Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Brain Res Brain Res Rev 60:1111–1120

    CAS  Google Scholar 

  8. Beste C, Domschke K, Kolev V, Yordanova J, Baffa A, Falkenstein M, Konrad C (2010) Functional 5-HT1a receptor polymorphism selectively modulates error-specific subprocesses of performance monitoring. Hum Brain Mapp 31:621–630

    PubMed  Google Scholar 

  9. Bond A, Lader M (1974) The use of analogue scales in rating subjective feelings. Br J Med Psychol 47:211–218

    Article  Google Scholar 

  10. Botvinick MM, Cohen JD, Carter CS (2004) Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci 8:539–546

    PubMed  Article  Google Scholar 

  11. Brazil IA, de Bruijn ER, Bulten BH, von Borries AK, van Lankveld JJ, Buitelaar JK, Verkes RJ (2009) Early and late components of error monitoring in violent offenders with psychopathy. Biol Psychiatry 65:137–143

    PubMed  Article  Google Scholar 

  12. Burle B, Roger C, Allain S, Vidal F, Hasbroucq T (2008) Error negativity does not reflect conflict: a reappraisal of conflict monitoring and anterior cingulate cortex activity. J Cogn Neurosci 20:1637–1655

    PubMed  Article  Google Scholar 

  13. Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27:699–711

    CAS  PubMed  Article  Google Scholar 

  14. Cassidy SM, Robertson IH, O'Connell RG (2012) Retest reliability of event-related potentials: evidence from a variety of paradigms. Psychophysiology 49:659–664

    PubMed  Article  Google Scholar 

  15. Chamberlain SR, Del Campo N, Dowson J, Muller U, Clark L, Robbins TW, Sahakian BJ (2007) Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder. Biol Psychiatry 62:977–984

    CAS  PubMed  Article  Google Scholar 

  16. Chamberlain SR, Hampshire A, Muller U, Rubia K, Del Campo N, Craig K, Regenthal R, Suckling J, Roiser JP, Grant JE, Bullmore ET, Robbins TW, Sahakian BJ (2009) Atomoxetine modulates right inferior frontal activation during inhibitory control: a pharmacological functional magnetic resonance imaging study. Biol Psychiatry 65:550–555

    CAS  PubMed  Article  Google Scholar 

  17. Cools R, D'Esposito M (2011) Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 69:e113–e125

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  18. Davies PL, Segalowitz SJ, Gavin WJ (2004) Development of response-monitoring ERPs in 7- to 25-year-olds. Dev Neuropsychol 25:355–376

    PubMed  Article  Google Scholar 

  19. Dayan P, Yu AJ (2006) Phasic norepinephrine: a neural interrupt signal for unexpected events. Network 17:335–350

    PubMed  Article  Google Scholar 

  20. de Bruijn ER, Hulstijn W, Verkes RJ, Ruigt GS, Sabbe BG (2004) Drug-induced stimulation and suppression of action monitoring in healthy volunteers. Psychopharmacology (Berl) 177:151–160

    CAS  Article  Google Scholar 

  21. de Bruijn ER, Sabbe BG, Hulstijn W, Ruigt GS, Verkes RJ (2006) Effects of antipsychotic and antidepressant drugs on action monitoring in healthy volunteers. Brain Res 1105:122–129

    PubMed  Article  Google Scholar 

  22. Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK (2005) Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25:11730–11737

    CAS  PubMed  Article  Google Scholar 

  23. Dehaene S, Posner MI, Tucker DM (1994) Localization of a neural system for error detection and compensation. Psychol Sci 5:303–305

    Article  Google Scholar 

  24. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21

    PubMed  Article  Google Scholar 

  25. Dockree PM, Kelly SP, Robertson IH, Reilly RB, Foxe JJ (2005) Neurophysiological markers of alert responding during goal-directed behavior: a high-density electrical mapping study. Neuroimage 27:587–601

    PubMed  Article  Google Scholar 

  26. Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a non-search task. Percept Psychophys 16:143–149

    Article  Google Scholar 

  27. Falkenstein M, Hohnsbein J, Hoormann J, Blanke L (1991) Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalogr Clin Neurophysiol 78:447–455

    CAS  PubMed  Article  Google Scholar 

  28. Falkenstein M, Hoormann J, Christ S, Hohnsbein J (2000) ERP components on reaction errors and their functional significance: a tutorial. Biol Psychol 51:87–107

    CAS  PubMed  Article  Google Scholar 

  29. Falkenstein M, Hielscher H, Dziobek I, Schwarzenau P, Hoormann J, Sunderman B, Hohnsbein J (2001) Action monitoring, error detection, and the basal ganglia: an ERP study. Neuroreport 12:157–161

    CAS  PubMed  Article  Google Scholar 

  30. Fallgatter AJ, Herrmann MJ, Roemmler J, Ehlis AC, Wagener A, Heidrich A, Ortega G, Zeng Y, Lesch KP (2004) Allelic variation of serotonin transporter function modulates the brain electrical response for error processing. Neuropsychopharmacology 29:1506–1511

    CAS  PubMed  Article  Google Scholar 

  31. Foti D, Kotov R, Bromet E, Hajcak G (2012) Beyond the broken error-related negativity: functional and diagnostic correlates of error processing in psychosis. Biol Psychiatry 71:864–872

    PubMed Central  PubMed  Article  Google Scholar 

  32. Franken IH, van Strien JW, Franzek EJ, van de Wetering BJ (2007) Error-processing deficits in patients with cocaine dependence. Biol Psychol 75:45–51

    PubMed  Article  Google Scholar 

  33. Gamo NJ, Wang M, Arnsten AF (2010) Methylphenidate and atomoxetine enhance prefrontal function through alpha2-adrenergic and dopamine D1 receptors. J Am Acad Child Adolesc Psychiatry 49:1011–1023

    PubMed Central  PubMed  Article  Google Scholar 

  34. Geburek AJ, Rist F, Gediga G, Stroux D, Pedersen A (2012) Electrophysiological indices of error monitoring in juvenile and adult attention deficit hyperactivity disorder (ADHD)—a meta-analytic appraisal. Int J Psychophysiol 87:349–362

    PubMed  Article  Google Scholar 

  35. Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin EA (1993) Neural system for error-detection and compensation. Psychol Sci 4:385–390

    Article  Google Scholar 

  36. Gehring WJ, Himle J, Nisenson LG (2000) Action-monitoring dysfunction in obsessive-compulsive disorder. Psychol Sci 11:1–6

    CAS  PubMed  Article  Google Scholar 

  37. Gratton G, Coles MG, Donchin E (1992) Optimizing the use of information: strategic control of activation of responses. J Exp Psychol Gen 121:480–506

    CAS  PubMed  Article  Google Scholar 

  38. Hajcak G, Moser JS, Yeung N, Simons RF (2005) On the ERN and the significance of errors. Psychophysiology 42:151–160

    PubMed  Article  Google Scholar 

  39. Han DD, Gu HH (2006) Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol 6:6

    PubMed Central  PubMed  Article  Google Scholar 

  40. Herrmann MJ, Rommler J, Ehlis AC, Heidrich A, Fallgatter AJ (2004) Source localization (LORETA) of the error-related-negativity (ERN/Ne) and positivity (Pe). Brain Res Cogn Brain Res 20:294–299

    PubMed  Article  Google Scholar 

  41. Herrmann MJ, Mader K, Schreppel T, Jacob C, Heine M, Boreatti-Hummer A, Ehlis AC, Scheuerpflug P, Pauli P, Fallgatter AJ (2010) Neural correlates of performance monitoring in adult patients with attention deficit hyperactivity disorder (ADHD). World J Biol Psychiatry 11:457–464

    PubMed  Article  Google Scholar 

  42. Holmes AJ, Pizzagalli DA (2008) Spatiotemporal dynamics of error processing dysfunctions in major depressive disorder. Arch Gen Psychiatry 65:179–188

    PubMed Central  PubMed  Article  Google Scholar 

  43. Holmes AJ, Bogdan R, Pizzagalli DA (2010) Serotonin transporter genotype and action monitoring dysfunction: a possible substrate underlying increased vulnerability to depression. Neuropsychopharmacology 35:1186–1197

    CAS  PubMed  Article  Google Scholar 

  44. Holroyd CB, Coles MG (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109:679–709

    PubMed  Article  Google Scholar 

  45. Holroyd CB, Yeung N, Coles MG, Cohen JD (2005) A mechanism for error detection in speeded response time tasks. J Exp Psychol Gen 134:163–191

    PubMed  Article  Google Scholar 

  46. Jonkman LM, van Melis JJ, Kemner C, Markus CR (2007) Methylphenidate improves deficient error evaluation in children with ADHD: an event-related brain potential study. Biol Psychol 76:217–229

    PubMed  Article  Google Scholar 

  47. Kramer UM, Cunillera T, Camara E, Marco-Pallares J, Cucurell D, Nager W, Bauer P, Schule R, Schols L, Rodriguez-Fornells A, Munte TF (2007) The impact of catechol-O-methyltransferase and dopamine D4 receptor genotypes on neurophysiological markers of performance monitoring. J Neurosci 27:14190–14198

    PubMed  Article  Google Scholar 

  48. Ladouceur CD, Dahl RE, Carter CS (2007) Development of action monitoring through adolescence into adulthood: ERP and source localization. Dev Sci 10:874–891

    PubMed  Article  Google Scholar 

  49. Larson MJ, Baldwin SA, Good DA, Fair JE (2010) Temporal stability of the error-related negativity (ERN) and post-error positivity (Pe): the role of number of trials. Psychophysiology 47:1167–1171

    PubMed  Article  Google Scholar 

  50. Lee YS, Han DH, Lee JH, Choi TY (2010) The effects of methylphenidate on neural substrates associated with interference suppression in children with ADHD: a preliminary study using event related fMRI. Psychiatry Investig 7:49–54

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  51. Maier ME, di Pellegrino G, Steinhauser M (2012) Enhanced error-related negativity on flanker errors: error expectancy or error significance? Psychophysiology 49:899–908

    PubMed  Article  Google Scholar 

  52. McLoughlin G, Albrecht B, Banaschewski T, Rothenberger A, Brandeis D, Asherson P, Kuntsi J (2009) Performance monitoring is altered in adult ADHD: a familial event-related potential investigation. Neuropsychologia 47:3134–3142

    PubMed Central  PubMed  Article  Google Scholar 

  53. Millan MJ, Newman-Tancredi A, Audinot V, Cussac D, Lejeune F, Nicolas JP, Coge F, Galizzi JP, Boutin JA, Rivet JM, Dekeyne A, Gobert A (2000) Agonist and antagonist actions of yohimbine as compared to fluparoxan at alpha(2)-adrenergic receptors (AR)s, serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors. Significance for the modulation of frontocortical monoaminergic transmission and depressive states. Synapse 35:79–95

    CAS  PubMed  Article  Google Scholar 

  54. Murphy PR, Robertson IH, Balsters JH, O'Connell RG (2011) Pupillometry and P3 index the locus coeruleus-noradrenergic arousal function in humans. Psychophysiology 48:1532–1543

    PubMed  Article  Google Scholar 

  55. Murphy PR, Robertson IH, Allen D, Hester R, O'Connell RG (2012) An electrophysiological signal that precisely tracks the emergence of error awareness. Front Hum Neurosci 6:65

    PubMed Central  PubMed  Article  Google Scholar 

  56. Nieuwenhuis S, Ridderinkhof KR, Blom J, Band GP, Kok A (2001) Error-related brain potentials are differentially related to awareness of response errors: evidence from an antisaccade task. Psychophysiology 38:752–760

    CAS  PubMed  Article  Google Scholar 

  57. Nieuwenhuis S, Aston-Jones G, Cohen JD (2005) Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol Bull 131:510–532

    PubMed  Article  Google Scholar 

  58. Norris H (1971) The action of sedatives on brain stem oculomotor systems in man. Neuropharmacology 10:181–191

    CAS  PubMed  Article  Google Scholar 

  59. O'Connell RG, Dockree PM, Bellgrove MA, Kelly SP, Hester R, Garavan H, Robertson IH, Foxe JJ (2007) The role of cingulate cortex in the detection of errors with and without awareness: a high-density electrical mapping study. Eur J Neurosci 25:2571–2579

    PubMed  Article  Google Scholar 

  60. O'Connell RG, Bellgrove MA, Dockree PM, Lau A, Hester R, Garavan H, Fitzgerald M, Foxe JJ, Robertson IH (2009) The neural correlates of deficient error awareness in attention-deficit hyperactivity disorder (ADHD). Neuropsychologia 47:1149–1159

    PubMed  Article  Google Scholar 

  61. Ortega JE, Fernandez-Pastor B, Callado LF, Meana JJ (2010) In vivo potentiation of reboxetine and citalopram effect on extracellular noradrenaline in rat brain by alpha2-adrenoceptor antagonism. Eur Neuropsychopharmacol 20:813–822

    CAS  PubMed  Article  Google Scholar 

  62. Overbeek TJM, Nieuwenhuis S, Ridderinkhof KR (2005) Dissociable components of error processing: on the functional significance of the Pe vis-à-vis the ERN/Ne. J Psychophysiol 19:319–329

    Article  Google Scholar 

  63. Perez VB, Ford JM, Roach BJ, Woods SW, McGlashan TH, Srihari VH, Loewy RL, Vinogradov S, Mathalon DH (2012) Error monitoring dysfunction across the illness course of schizophrenia. J Abnorm Psychol 121:372–387

    PubMed Central  PubMed  Article  Google Scholar 

  64. Pontifex MB, Scudder MR, Brown ML, O'Leary KC, Wu CT, Themanson JR, Hillman CH (2010) On the number of trials necessary for stabilization of error-related brain activity across the life span. Psychophysiology 47:767–773

    PubMed  Google Scholar 

  65. Potts GF (2011) Impact of reward and punishment motivation on behavior monitoring as indexed by the error-related negativity. Int J Psychophysiol 81:324–331

    PubMed Central  PubMed  Article  Google Scholar 

  66. Rabbitt PM (1966) Errors and error correction in choice-response tasks. J Exp Psychol 71:264–272

    CAS  PubMed  Article  Google Scholar 

  67. Riba J, Rodriguez-Fornells A, Morte A, Munte TF, Barbanoj MJ (2005) Noradrenergic stimulation enhances human action monitoring. J Neurosci 25:4370–4374

    CAS  PubMed  Article  Google Scholar 

  68. Ridderinkhof KR, Ramautar JR, Wijnen JG (2009) To P(E) or not to P(E): a P3-like ERP component reflecting the processing of response errors. Psychophysiology 46:531–538

    PubMed  Article  Google Scholar 

  69. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59(Suppl 20):22–33, quiz 34-57

    PubMed  Google Scholar 

  70. Shiels K, Hawk LW Jr (2010) Self-regulation in ADHD: the role of error processing. Clin Psychol Rev 30:951–961

    PubMed Central  PubMed  Article  Google Scholar 

  71. Steinhauser M, Yeung N (2010) Decision processes in human performance monitoring. J Neurosci 30:15643–15653

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  72. Stemmer B, Segalowitz SJ, Dywan J, Panisset M, Melmed C (2007) The error negativity in nonmedicated and medicated patients with Parkinson's disease. Clin Neurophysiol 118:1223–1229

    PubMed  Article  Google Scholar 

  73. Szabo ST, Blier P (2001) Effect of the selective noradrenergic reuptake inhibitor reboxetine on the firing activity of noradrenaline and serotonin neurons. The Eur J Neurosci 13:2077–2087

    CAS  Article  Google Scholar 

  74. Themanson JR, Rosen PJ, Pontifex MB, Hillman CH, McAuley E (2012) Alterations in error-related brain activity and post-error behavior over time. Brain Cogn 80:257–265

    PubMed  Article  Google Scholar 

  75. Thomas DN, Nutt DJ, Holman RB (1998) Sertraline, a selective serotonin reuptake inhibitor modulates extracellular noradrenaline in the rat frontal cortex. J Psychopharmacol 12:366–370

    CAS  PubMed  Article  Google Scholar 

  76. Tieges Z, Richard Ridderinkhof K, Snel J, Kok A (2004) Caffeine strengthens action monitoring: evidence from the error-related negativity. Brain Res Cogn Brain Res 21:87–93

    CAS  PubMed  Article  Google Scholar 

  77. Ullsperger M, Harsay HA, Wessel JR, Ridderinkhof KR (2010) Conscious perception of errors and its relation to the anterior insula. Brain Struct Funct 214:629–643

    PubMed Central  PubMed  Article  Google Scholar 

  78. Varnas K, Halldin C, Hall H (2004) Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Hum Brain Mapp 22:246–260

    PubMed  Article  Google Scholar 

  79. Vidal F, Hasbroucq T, Grapperon J, Bonnet M (2000) Is the ‘error negativity’ specific to errors? Biol Psychol 51:109–128

    CAS  PubMed  Article  Google Scholar 

  80. Volkow ND, Wang G, Fowler JS, Logan J, Gerasimov M, Maynard L, Ding Y, Gatley SJ, Gifford A, Franceschi D (2001) Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 21:RC121

    CAS  PubMed  Google Scholar 

  81. Volkow ND, Fowler JS, Wang G, Ding Y, Gatley SJ (2002) Mechanism of action of methylphenidate: insights from PET imaging studies. J Atten Disord 6(Suppl 1):S31–S43

    PubMed  Google Scholar 

  82. Wardle MC, Yang A, de Wit H (2012) Effect of d-amphetamine on post-error slowing in healthy volunteers. Psychopharmacology (Berl) 220:109–115

    CAS  Article  Google Scholar 

  83. Wessel JR (2012) Error awareness and the error-related negativity: evaluating the first decade of evidence. Front Hum Neurosci 6:88

    PubMed Central  PubMed  Article  Google Scholar 

  84. Wessel JR, Danielmeier C, Morton JB, Ullsperger M (2012) Surprise and error: common neuronal architecture for the processing of errors and novelty. J Neurosci 32:7528–7537

    CAS  PubMed  Article  Google Scholar 

  85. Wiersema JR, van der Meere JJ, Roeyers H (2009) ERP correlates of error monitoring in adult ADHD. J Neural Transm 116:371–379

    CAS  PubMed  Article  Google Scholar 

  86. Willemssen R, Muller T, Schwarz M, Hohnsbein J, Falkenstein M (2008) Error processing in patients with Parkinson's disease: the influence of medication state. J Neural Transm 115:461–468

    CAS  PubMed  Article  Google Scholar 

  87. Yeung N, Botvinick MM, Cohen JD (2004) The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol Rev 111:931–959

    PubMed  Article  Google Scholar 

  88. Zirnheld PJ, Carroll CA, Kieffaber PD, O'Donnell BF, Shekhar A, Hetrick WP (2004) Haloperidol impairs learning and error-related negativity in humans. J Cogn Neurosci 16:1098–1112

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Health and Medical Research Council of Australia (NHMRC) (569532) to MAB. MAB is supported by a Career Development Award from the NHMRC, Australia. We would like to thank the Wesley Hospital Pharmacy for dispensing the drugs associated with this project.

Conflict of interest

Both LSN and MAB have received reimbursement from Lilly Pharmaceuticals for conference travel expenses and for speaking at conferences. The author MAB has received speaker's fees from Janssen-Cilag. The author LSN has received speaker's fees from AstraZeneca, Bristol-Myers Squibb, Boehringer Ingelheim and Janssen-Cilag. The authors JJMB, RGO and AJD report no biomedical financial interests or potential conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark A. Bellgrove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 355 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barnes, J.J.M., O’Connell, R.G., Nandam, L.S. et al. Monoaminergic modulation of behavioural and electrophysiological indices of error processing. Psychopharmacology 231, 379–392 (2014). https://doi.org/10.1007/s00213-013-3246-y

Download citation

Keywords

  • Atomoxetine
  • Citalopram
  • Dopamine
  • Error positivity
  • Error processing
  • Error-related negativity
  • Methylphenidate
  • Noradrenaline
  • Performance monitoring
  • Serotonin