Skip to main content
Log in

Role of α5* nicotinic acetylcholine receptors in the effects of acute and chronic nicotine treatment on brain reward function in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Objective

Allelic variation in the α5 nicotinic acetylcholine receptor (nAChR) subunit gene, CHRNA5, increases vulnerability to tobacco addiction. Here, we investigated the role of α5* nAChRs in the effects of nicotine on brain reward systems.

Materials and methods

Effects of acute (0.03125–0.5 mg/kg SC) or chronic (24 mg/kg per day; osmotic minipump) nicotine and mecamylamine-precipitated withdrawal on intracranial self-stimulation (ICSS) thresholds were assessed in wild-type and α5 nAChR subunit knockout mice. Noxious effects of nicotine were further investigated using a conditioned taste aversion procedure.

Results

Lower nicotine doses (0.03125–0.125 mg/kg) decreased ICSS thresholds in wild-type and α5 knockout mice. At higher doses (0.25–0.5 mg/kg), threshold-lowering effects of nicotine were diminished in wild-type mice, whereas nicotine lowered thresholds across all doses tested in α5 knockout mice. Nicotine (1.5 mg/kg) conditioned a taste aversion to saccharine equally in both genotypes. Mecamylamine (5 mg/kg) elevated ICSS thresholds by a similar magnitude in wild-type and α5 knockout mice prepared with minipumps delivering nicotine. Unexpectedly, mecamylamine also elevated thresholds in saline-treated α5 knockout mice.

Conclusion

α5* nAChRs are not involved in reward-enhancing effects of lower nicotine doses, the reward-inhibiting effects of nicotine withdrawal, or the general noxious effects of higher nicotine doses. Instead, α5* nAChRs regulate the reward-inhibiting effects nicotine doses that oppose the reward-facilitating effects of the drug. These data suggest that disruption of α5* nAChR signaling greatly expands the range of nicotine doses that facilitate brain reward activity, which may help explain the increased tobacco addiction vulnerability associated with CHRNA5 risk alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albuquerque EX, Pereira EF, Castro NG, Alkondon M, Reinhardt S, Schroder H, Maelicke A (1995) Nicotinic receptor function in the mammalian central nervous system. Ann N Y Acad Sci 757:48–72

    Article  PubMed  CAS  Google Scholar 

  • Bachmanov AA, Reed DR, Beauchamp GK, Tordoff MG (2002) Food intake, water intake, and drinking spout side preference of 28 mouse strains. Behav Genet 32:435–443

    Article  PubMed  Google Scholar 

  • Berrettini W, Yuan X, Tozzi F, Song K, Francks C, Chilcoat H, Waterworth D, Muglia P, Mooser V (2008) Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol Psychiatr 13:368–373

    Article  CAS  Google Scholar 

  • Bierut LJ (2010) Convergence of genetic findings for nicotine dependence and smoking related diseases with chromosome 15q24-25. Trends Pharmacol Sci 31:46–51

    Article  PubMed  CAS  Google Scholar 

  • Bierut LJ, Stitzel JA, Wang JC, Hinrichs AL, Grucza RA, Xuei X, Saccone NL, Saccone SF, Bertelsen S, Fox L, Horton WJ, Breslau N, Budde J, Cloninger CR, Dick DM, Foroud T, Hatsukami D, Hesselbrock V, Johnson EO, Kramer J, Kuperman S, Madden PA, Mayo K, Nurnberger J Jr, Pomerleau O, Porjesz B, Reyes O, Schuckit M, Swan G, Tischfield JA, Edenberg HJ, Rice JP, Goate AM (2008) Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatr 165:1163–1171

    Article  PubMed  Google Scholar 

  • Bruijnzeel AW, Markou A (2004) Adaptations in cholinergic transmission in the ventral tegmental area associated with the affective signs of nicotine withdrawal in rats. Neuropharmacology 47:572–579

    Article  PubMed  CAS  Google Scholar 

  • Caille S, Guillem K, Cador M, Manzoni O, Georges F (2009) Voluntary nicotine consumption triggers in vivo potentiation of cortical excitatory drives to midbrain dopaminergic neurons. J Neurosci: Off J Soc Neurosci 29:10410–10415

    Article  CAS  Google Scholar 

  • Cappell H, Le Blanc AE (1975) Conditioned aversion by psychoactive drugs: does it have significance for an understanding of drug dependence? Addict Behav 1:55–64

    Article  PubMed  CAS  Google Scholar 

  • Collins AC, Luo Y, Selvaag S, Marks MJ (1994) Sensitivity to nicotine and brain nicotinic receptors are altered by chronic nicotine and mecamylamine infusion. J Pharmacol Exp Ther 271:125–133

    PubMed  CAS  Google Scholar 

  • Doherty K, Kinnunen T, Militello FS, Garvey AJ (1995) Urges to smoke during the first month of abstinence: relationship to relapse and predictors. Psychopharmacology 119:171–178

    Article  PubMed  CAS  Google Scholar 

  • Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715

    Article  PubMed  CAS  Google Scholar 

  • Elgoyhen AB, Vetter DE, Katz E, Rothlin CV, Heinemann SF, Boulter J (2001) alpha10: A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc Natl Acad Sci U S A 98:3501–3506

    Article  PubMed  CAS  Google Scholar 

  • Farquhar MJ, Latimer MP, Winn P (2012) Nicotine self-administered directly into the VTA by rats is weakly reinforcing but has strong reinforcement enhancing properties. Psychopharmacology 220:43–54

    Article  PubMed  CAS  Google Scholar 

  • Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 41:31–37

    PubMed  CAS  Google Scholar 

  • Fowler CD, Lu Q, Johnson PM, Marks MJ, Kenny PJ (2011) Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471:597–601

    Article  PubMed  CAS  Google Scholar 

  • Frahm S, Slimak MA, Ferrarese L, Santos-Torres J, Antolin-Fontes B, Auer S, Filkin S, Pons S, Fontaine JF, Tsetlin V, Maskos U, Ibanez-Tallon I (2011) Aversion to nicotine is regulated by the balanced activity of beta4 and alpha5 nicotinic receptor subunits in the medial habenula. Neuron 70:522–535

    Article  PubMed  CAS  Google Scholar 

  • Goldberg SR, Spealman RD (1982) Maintenance and suppression of behavior by intravenous nicotine injections in squirrel monkeys. Fed Proc 41:216–220

    PubMed  CAS  Google Scholar 

  • Goldberg SR, Spealman RD (1983) Suppression of behavior by intravenous injections of nicotine or by electric shocks in squirrel monkeys: effects of chlordiazepoxide and mecamylamine. J Pharmacol Exp Ther 224:334–340

    PubMed  CAS  Google Scholar 

  • Goldberg SR, Spealman RD, Goldberg DM (1981) Persistent behavior at high rates maintained by intravenous self-administration of nicotine. Science 214:573–575

    Article  PubMed  CAS  Google Scholar 

  • Goldberg SR, Spealman RD, Risner ME, Henningfield JE (1983) Control of behavior by intravenous nicotine injections in laboratory animals. Pharmacol Biochem Behav 19:1011–1020

    Article  PubMed  CAS  Google Scholar 

  • Gommans J, Stolerman IP, Shoaib M (2000) Antagonism of the discriminative and aversive stimulus properties of nicotine in C57BL/6J mice. Neuropharmacology 39:2840–2847

    Article  PubMed  CAS  Google Scholar 

  • Grigson PS (1997) Conditioned taste aversions and drugs of abuse: a reinterpretation. Behav Neurosci 111:129–136

    Article  PubMed  CAS  Google Scholar 

  • Grucza RA, Wang JC, Stitzel JA, Hinrichs AL, Saccone SF, Saccone NL, Bucholz KK, Cloninger CR, Neuman RJ, Budde JP, Fox L, Bertelsen S, Kramer J, Hesselbrock V, Tischfield J, Nurnberger JI Jr, Almasy L, Porjesz B, Kuperman S, Schuckit MA, Edenberg HJ, Rice JP, Goate AM, Bierut LJ (2008) A risk allele for nicotine dependence in CHRNA5 is a protective allele for cocaine dependence. Biol Psychiatr 64:922–929

    Article  CAS  Google Scholar 

  • Henningfield JE, Goldberg SR (1983) Control of behavior by intravenous nicotine injections in human subjects. Pharmacol Biochem Behav 19:1021–1026

    Article  PubMed  CAS  Google Scholar 

  • Henningfield JE, Goldberg SR, Herning RI, Jasinski DR, Lukas SE, Miyasato K, Nemeth-Coslett R, Pickworth WB, Rose JE, Sampson A et al (1986) Human studies of the behavioral pharmacological determinants of nicotine dependence. NIDA Res Monogr 67:54–65

    PubMed  CAS  Google Scholar 

  • Hilario MR, Turner JR, Blendy JA (2012) Reward sensitization: effects of repeated nicotine exposure and withdrawal in mice. Neuropsychopharmacology 37:2661–2670

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand BE, Panagis G, Svensson TH, Nomikos GG (1999) Behavioral and biochemical manifestations of mecamylamine-precipitated nicotine withdrawal in the rat: role of nicotinic receptors in the ventral tegmental area. Neuropsychopharmacology 21:560–574

    Article  PubMed  CAS  Google Scholar 

  • Hughes JR, Gust SW, Skoog K, Keenan RM, Fenwick JW (1991) Symptoms of tobacco withdrawal. A replication and extension. Arch Gen Psychiatr 48:52–59

    Article  PubMed  CAS  Google Scholar 

  • Jackson KJ, Marks MJ, Vann RE, Chen X, Gamage TF, Warner JA, Damaj MI (2010) Role of alpha5 nicotinic acetylcholine receptors in pharmacological and behavioral effects of nicotine in mice. J Pharmacol Exp Ther 334:137–146

    Article  PubMed  CAS  Google Scholar 

  • Jackson KJ, Martin BR, Changeux JP, Damaj MI (2008) Differential role of nicotinic acetylcholine receptor subunits in physical and affective nicotine withdrawal signs. J Pharmacol Exp Ther 325:302–312

    Article  PubMed  CAS  Google Scholar 

  • Jensen RA, Gilbert DG, Meliska CJ, Landrum TA, Szary AB (1990) Characterization of a dose–response curve for nicotine-induced conditioned taste aversion in rats: relationship to elevation of plasma beta-endorphin concentration. Behav Neural Biol 53:428–440

    Article  PubMed  CAS  Google Scholar 

  • Johnson PM, Hollander JA, Kenny PJ (2008) Decreased brain reward function during nicotine withdrawal in C57BL6 mice: evidence from intracranial self-stimulation (ICSS) studies. Pharmacol Biochem Behav 90:409–415

    Article  PubMed  CAS  Google Scholar 

  • Kenny PJ (2007) Brain reward systems and compulsive drug use. Trends Pharmacol Sci 28:135–141

    Article  PubMed  CAS  Google Scholar 

  • Kenny PJ, Chartoff E, Roberto M, Carlezon WA Jr, Markou A (2009) NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: role of the ventral tegmental area and central nucleus of the amygdala. Neuropsychopharmacology 34:266–281

    Article  PubMed  CAS  Google Scholar 

  • Kenny PJ, Markou A (2001) Neurobiology of the nicotine withdrawal syndrome. Pharmacol Biochem Behav 70:531–549

    Article  PubMed  CAS  Google Scholar 

  • Kenny PJ, Markou A (2006) Nicotine self-administration acutely activates brain reward systems and induces a long-lasting increase in reward sensitivity. Neuropsychopharmacology 31:1203–1211

    PubMed  CAS  Google Scholar 

  • Le Moal M, Koob GF (2007) Drug addiction: pathways to the disease and pathophysiological perspectives. Eur neuropsychopharmacol 17:377–393

    Article  PubMed  Google Scholar 

  • Le Novere N, Corringer PJ, Changeux JP (2002) The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J Neurobiol 53:447–456

    Article  PubMed  Google Scholar 

  • Lena C, Changeux JP (1998) Allosteric nicotinic receptors, human pathologies. J Physiol Paris 92:63–74

    Article  PubMed  CAS  Google Scholar 

  • Lips EH, Gaborieau V, McKay JD, Chabrier A, Hung RJ, Boffetta P, Hashibe M, Zaridze D, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, Field JK, Liloglou T, Xinarianos G, McLaughlin J, Liu G, Skorpen F, Elvestad MB, Hveem K, Vatten L, Study E, Benhamou S, Lagiou P, Holcatova I, Merletti F, Kjaerheim K, Agudo A, Castellsague X, Macfarlane TV, Barzan L, Canova C, Lowry R, Conway DI, Znaor A, Healy C, Curado MP, Koifman S, Eluf-Neto J, Matos E, Menezes A, Fernandez L, Metspalu A, Heath S, Lathrop M, Brennan P (2009) Association between a 15q25 gene variant, smoking quantity and tobacco-related cancers among 17 000 individuals. Int J Epidemiol 39:563–577

    Article  PubMed  Google Scholar 

  • Liu ZH, Jin WQ (2004) Decrease of ventral tegmental area dopamine neuronal activity in nicotine withdrawal rats. Neuroreport 15:1479–1481

    Article  PubMed  CAS  Google Scholar 

  • Marks MJ, Pauly JR, Gross SD, Deneris ES, Hermans-Borgmeyer I, Heinemann SF, Collins AC (1992) Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J Neurosci: Off J Soc Neurosci 12:2765–2784

    CAS  Google Scholar 

  • Marubio LM, del Mar Arroyo-Jimenez M, Cordero-Erausquin M, Lena C, Le Novere N, de Kerchove d'Exaerde A, Huchet M, Damaj MI, Changeux JP (1999) Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature 398:805–810

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G (2001) The mouse brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Piasecki TM, Fiore MC, Baker TB (1998) Profiles in discouragement: two studies of variability in the time course of smoking withdrawal symptoms. J Abnorm Psychol 107:238–251

    Article  PubMed  CAS  Google Scholar 

  • Piasecki TM, Jorenby DE, Smith SS, Fiore MC, Baker TB (2003) Smoking withdrawal dynamics: II. Improved tests of withdrawal-relapse relations. J Abnorm Psychol 112:14–27

    Article  PubMed  Google Scholar 

  • Rauhut AS, Hawrylak M, Mardekian SK (2008) Bupropion differentially alters the aversive, locomotor and rewarding properties of nicotine in CD-1 mice. Pharmacol Biochem Behav 90:598–607

    Article  PubMed  CAS  Google Scholar 

  • Risinger FO, Oakes RA (1995) Nicotine-induced conditioned place preference and conditioned place aversion in mice. Pharmacol Biochem Behav 51:457–461

    Article  PubMed  CAS  Google Scholar 

  • Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau O, Swan GE, Goate AM, Rutter J, Bertelsen S, Fox L, Fugman D, Martin NG, Montgomery GW, Wang JC, Ballinger DG, Rice JP, Bierut LJ (2007) Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 16:36–49

    Article  PubMed  CAS  Google Scholar 

  • Salas R, Sturm R, Boulter J, De Biasi M (2009) Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice. J Neurosci: Off J Soc Neurosci 29:3014–3018

    Article  CAS  Google Scholar 

  • Sherva R, Wilhelmsen K, Pomerleau CS, Chasse SA, Rice JP, Snedecor SM, Bierut LJ, Neuman RJ, Pomerleau OF (2008) Association of a single nucleotide polymorphism in neuronal acetylcholine receptor subunit alpha 5 (CHRNA5) with smoking status and with ‘pleasurable buzz’ during early experimentation with smoking. Addiction 103:1544–1552

    Article  PubMed  Google Scholar 

  • Shiffman SM, Jarvik ME (1976) Smoking withdrawal symptoms in two weeks of abstinence. Psychopharmacology 50:35–39

    Article  PubMed  CAS  Google Scholar 

  • Shoaib M, Gommans J, Morley A, Stolerman IP, Grailhe R, Changeux JP (2002) The role of nicotinic receptor beta-2 subunits in nicotine discrimination and conditioned taste aversion. Neuropharmacology 42:530–539

    Article  PubMed  CAS  Google Scholar 

  • Singh TG, Rehni AK, Arora S (2013) Ro 32–0432 attenuates mecamylamine-precipitated nicotine withdrawal syndrome in mice. Naunyn-Schmiedeberg's Arch Pharmacol 386:197–204

    Article  CAS  Google Scholar 

  • Spealman RD, Goldberg SR (1982) Maintenance of schedule-controlled behavior by intravenous injections of nicotine in squirrel monkeys. J Pharmacol Exp Ther 223:402–408

    PubMed  CAS  Google Scholar 

  • Stevens VL, Bierut LJ, Talbot JT, Wang JC, Sun J, Hinrichs AL, Thun MJ, Goate A, Calle EE (2008) Nicotinic receptor gene variants influence susceptibility to heavy smoking. Cancer Epidemiol Biomarkers Prev 17:3517–3525

    Article  PubMed  CAS  Google Scholar 

  • Stoker AK, Olivier B, Markou A (2012) Role of alpha7- and beta4-containing nicotinic acetylcholine receptors in the affective and somatic aspects of nicotine withdrawal: studies in knockout mice. Behav Genet 42:423–436

    Article  PubMed  Google Scholar 

  • Stoker AK, Semenova S, Markou A (2008) Affective and somatic aspects of spontaneous and precipitated nicotine withdrawal in C57BL/6J and BALB/cByJ mice. Neuropharmacology 54:1223–1232

    Article  PubMed  CAS  Google Scholar 

  • Stolerman IP, Jarvis MJ (1995) The scientific case that nicotine is addictive. Psychopharmacol 117:2–10, discussion 14–20

    Article  CAS  Google Scholar 

  • Vincler MA, Eisenach JC (2005) Knock down of the alpha 5 nicotinic acetylcholine receptor in spinal nerve-ligated rats alleviates mechanical allodynia. Pharmacol Biochem Behav 80:135–143

    Article  PubMed  CAS  Google Scholar 

  • Wang JC, Grucza R, Cruchaga C, Hinrichs AL, Bertelsen S, Budde JP, Fox L, Goldstein E, Reyes O, Saccone N, Saccone S, Xuei X, Bucholz K, Kuperman S, Nurnberger J Jr, Rice JP, Schuckit M, Tischfield J, Hesselbrock V, Porjesz B, Edenberg HJ, Bierut LJ, Goate AM (2009) Genetic variation in the CHRNA5 gene affects mRNA levels and is associated with risk for alcohol dependence. Mol Psychiatr 14:501–510

    Article  CAS  Google Scholar 

  • Weiss RB, Baker TB, Cannon DS, von Niederhausern A, Dunn DM, Matsunami N, Singh NA, Baird L, Coon H, McMahon WM, Piper ME, Fiore MC, Scholand MB, Connett JE, Kanner RE, Gahring LC, Rogers SW, Hoidal JR, Leppert MF (2008) A candidate gene approach identifies the CHRNA5-A3-B4 region as a risk factor for age-dependent nicotine addiction. PLoS Genet 4:e1000125

    Article  PubMed  Google Scholar 

  • Young T, Wittenauer S, Parker R, Vincler M (2008) Peripheral nerve injury alters spinal nicotinic acetylcholine receptor pharmacology. Eur J Pharmacol 590:163–169

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Institute on Drug Abuse (D032543 to C.D.F. and DA020686 to P.J.K.). This is manuscript number 23093 from The Scripps Research Institute.

Conflict of interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Kenny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fowler, C.D., Tuesta, L. & Kenny, P.J. Role of α5* nicotinic acetylcholine receptors in the effects of acute and chronic nicotine treatment on brain reward function in mice. Psychopharmacology 229, 503–513 (2013). https://doi.org/10.1007/s00213-013-3235-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3235-1

Keywords

Navigation