The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders

Abstract

Rationale and objectives

Modafinil (MOD) and its R-enantiomer (R-MOD) are approved medications for narcolepsy and other sleep disorders. They have also been used, off-label, as cognitive enhancers in populations of patients with mental disorders, including substance abusers that demonstrate impaired cognitive function. A debated nonmedical use of MOD in healthy individuals to improve intellectual performance is raising questions about its potential abuse liability in this population.

Results and conclusions

MOD has low micromolar affinity for the dopamine transporter (DAT). Inhibition of dopamine (DA) reuptake via the DAT explains the enhancement of DA levels in several brain areas, an effect shared with psychostimulants like cocaine, methylphenidate, and the amphetamines. However, its neurochemical effects and anatomical pattern of brain area activation differ from typical psychostimulants and are consistent with its beneficial effects on cognitive performance processes such as attention, learning, and memory. At variance with typical psychostimulants, MOD shows very low, if any, abuse liability, in spite of its use as a cognitive enhancer by otherwise healthy individuals. Finally, recent clinical studies have focused on the potential use of MOD as a medication for treatment of drug abuse, but have not shown consistent outcomes. However, positive trends in several result measures suggest that medications that improve cognitive function, like MOD or R-MOD, may be beneficial for the treatment of substance use disorders in certain patient populations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Afifi AK (2003) The basal ganglia: a neural network with more than motor function. Semin Pediatr Neurol 10:3–10

    PubMed  Article  Google Scholar 

  2. Akaoka H, Roussel B, Lin JS, Chouvet G, Jouvet M (1991) Effect of modafinil and amphetamine on the rat catecholaminergic neuron activity. Neurosci Lett 123:20–22

    PubMed  CAS  Article  Google Scholar 

  3. Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27:1–39

    PubMed  CAS  Article  Google Scholar 

  4. Alvarez VA, Chow CC, Van Bockstaele EJ, Williams JT (2002) Frequency-dependent synchrony in locus ceruleus: role of electrotonic coupling. Proc Natl Acad Sci U S A 99:4032–4036

    PubMed  CAS  Article  Google Scholar 

  5. Anderson AL, Li SH, Biswas K, McSherry F, Holmes T, Iturriaga E, Kahn R, Chiang N, Beresford T, Campbell J, Haning W, Mawhinney J, McCann M, Rawson R, Stock C, Weis D, Yu E, Elkashef AM (2012) Modafinil for the treatment of methamphetamine dependence. Drug Alcohol Depend 120:135–141

    PubMed  CAS  Article  Google Scholar 

  6. Anderson AL, Reid MS, Li SH, Holmes T, Shemanski L, Slee A, Smith EV, Kahn R, Chiang N, Vocci F, Ciraulo D, Dackis C, Roache JD, Salloum IM, Somoza E, Urschel HC 3rd, Elkashef AM (2009) Modafinil for the treatment of cocaine dependence. Drug Alcohol Depend 104:133–139

    PubMed  CAS  Article  Google Scholar 

  7. Antonelli T, Ferraro L, Hillion J, Tomasini MC, Rambert FA, Fuxe K (1998) Modafinil prevents glutamate cytotoxicity in cultured cortical neurons. Neuroreport 9:4209–4213

    PubMed  CAS  Article  Google Scholar 

  8. Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus–norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450

    PubMed  CAS  Article  Google Scholar 

  9. Baranski JV, Pigeau R, Dinich P, Jacobs I (2004) Effects of modafinil on cognitive and meta-cognitive performance. Hum Psychopharmacol 19:323–332

    PubMed  CAS  Article  Google Scholar 

  10. Batejat DM, Lagarde DP (1999) Naps and modafinil as countermeasures for the effects of sleep deprivation on cognitive performance. Aviat Space Environ Med 70:493–498

    PubMed  CAS  Google Scholar 

  11. Beck P, Odle A, Wallace-Huitt T, Skinner RD, Garcia-Rill E (2008) Modafinil increases arousal determined by P13 potential amplitude: an effect blocked by gap junction antagonists. Sleep 31:1647–1654

    PubMed  Google Scholar 

  12. Bentley P, Driver J, Dolan RJ (2011) Cholinergic modulation of cognition: insights from human pharmacological functional neuroimaging. Prog Neurobiol 94:360–388

    PubMed  CAS  Article  Google Scholar 

  13. Beveridge TJ, Gill KE, Hanlon CA, Porrino LJ (2008) Review. Parallel studies of cocaine-related neural and cognitive impairment in humans and monkeys. Philos Trans R Soc Lond B Biol Sci 363:3257–3266

    PubMed  Article  Google Scholar 

  14. Blandina P, Passani MB (2006) Central histaminergic system interactions and cognition. Exs 98:149–163

    PubMed  CAS  Google Scholar 

  15. Boutrel B, Steiner N, Halfon O (2013) The hypocretins and the reward function: what have we learned so far? Front Behav Neurosci 7:59

    PubMed  CAS  Article  Google Scholar 

  16. Bowers MS, Chen BT, Bonci A (2010) AMPA receptor synaptic plasticity induced by psychostimulants: the past, present, and therapeutic future. Neuron 67:11–24

    PubMed  CAS  Article  Google Scholar 

  17. Brabant C, Alleva L, Quertemont E, Tirelli E (2010) Involvement of the brain histaminergic system in addiction and addiction-related behaviors: a comprehensive review with emphasis on the potential therapeutic use of histaminergic compounds in drug dependence. Prog Neurobiol 92:421–441

    PubMed  CAS  Article  Google Scholar 

  18. Brady KT, Gray KM, Tolliver BK (2011) Cognitive enhancers in the treatment of substance use disorders: clinical evidence. Pharmacol Biochem Behav 99:285–294

    PubMed  CAS  Article  Google Scholar 

  19. Brasil-Neto JP (2012) Learning, memory, and transcranial direct current stimulation. Front Psychiatry 3:80

    PubMed  Article  Google Scholar 

  20. Brioni JD, McGaugh JL (1988) Post-training administration of GABAergic antagonists enhances retention of aversively motivated tasks. Psychopharmacology (Berl) 96:505–510

    CAS  Article  Google Scholar 

  21. Brooks DJ (1995) The role of the basal ganglia in motor control: contributions from PET. J Neurol Sci 128:1–13

    PubMed  CAS  Article  Google Scholar 

  22. Bubser M, Byun N, Wood MR, Jones CK (2012) Muscarinic receptor pharmacology and circuitry for the modulation of cognition. Handb Exp Pharmacol (208):121–166

  23. Buguet A, Moroz DE, Radomski MW (2003) Modafinil—medical considerations for use in sustained operations. Aviat Space Environ Med 74:659–663

    PubMed  CAS  Google Scholar 

  24. Cakic V (2009) Smart drugs for cognitive enhancement: ethical and pragmatic considerations in the era of cosmetic neurology. J Med Ethics 35:611–615

    PubMed  CAS  Article  Google Scholar 

  25. Caldwell JA Jr, Caldwell JL, Smythe NK 3rd, Hall KK (2000) A double-blind, placebo-controlled investigation of the efficacy of modafinil for sustaining the alertness and performance of aviators: a helicopter simulator study. Psychopharmacology (Berl) 150:272–282

    CAS  Article  Google Scholar 

  26. Campbell VC, Kopajtic TA, Newman AH, Katz JL (2005) Assessment of the influence of histaminergic actions on cocaine-like effects of 3alpha-diphenylmethoxytropane analogs. J Pharmacol Exp Ther 315:631–640

    PubMed  CAS  Article  Google Scholar 

  27. Cao J, Prisinzano TE, Okunola OM, Kopajtic T, Shook M, Katz JL, Newman AH (2010) Structure–activity relationships at the monoamine transporters for a novel series of modafinil (2-[(diphenylmethyl)sulfinyl]acetamide) analogues. ACS Med Chem Lett 2:48–52

    PubMed  Article  CAS  Google Scholar 

  28. Cassel JC, Jeltsch H (1995) Serotonergic modulation of cholinergic function in the central nervous system: cognitive implications. Neuroscience 69:1–41

    PubMed  CAS  Article  Google Scholar 

  29. Chamberlain SR, Odlaug BL, Schreiber LR, Grant JE (2012) Association between tobacco smoking and cognitive functioning in young adults. Am J Addict 21(Suppl 1):S14–S19

    PubMed  Google Scholar 

  30. Chatterjee A (2004) Cosmetic neurology: the controversy over enhancing movement, mentation, and mood. Neurology 63:968–974

    PubMed  Article  Google Scholar 

  31. Chatterjee A (2007) Cosmetic neurology and cosmetic surgery: parallels, predictions, and challenges. Camb Q Healthc Ethics 16:129–137

    PubMed  Article  Google Scholar 

  32. Chudasama Y, Robbins TW (2006) Functions of frontostriatal systems in cognition: comparative neuropsychopharmacological studies in rats, monkeys and humans. Biol Psychol 73:19–38

    PubMed  CAS  Article  Google Scholar 

  33. Chung S, Hopf FW, Nagasaki H, Li CY, Belluzzi JD, Bonci A, Civelli O (2009) The melanin-concentrating hormone system modulates cocaine reward. Proc Natl Acad Sci U S A 106:6772–6777

    PubMed  CAS  Article  Google Scholar 

  34. Cooper JR, Bloom FE, Roth RH (1996a) Dopamine. The biochemical basis of neuropharmacology. Oxford University Press, Oxford, pp 293–351

    Google Scholar 

  35. Cooper JR, Bloom FE, Roth RH (1996b) Norepinephrine and epinephrine. The biochemical basis of neuropharmacology. Oxford University Press, Oxford, pp 226–292

    Google Scholar 

  36. Coyle JT (1996) The glutamatergic dysfunction hypothesis for schizophrenia. Harv Rev Psychiatry 3:241–253

    PubMed  CAS  Article  Google Scholar 

  37. Dackis CA, Kampman KM, Lynch KG, Pettinati HM, O'Brien CP (2005) A double-blind, placebo-controlled trial of modafinil for cocaine dependence. Neuropsychopharmacology 30:205–211

    PubMed  CAS  Article  Google Scholar 

  38. Dackis CA, Kampman KM, Lynch KG, Plebani JG, Pettinati HM, Sparkman T, O'Brien CP (2012) A double-blind, placebo-controlled trial of modafinil for cocaine dependence. J Subst Abuse Treat 43:303–312

    PubMed  Article  Google Scholar 

  39. Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784

    PubMed  CAS  Article  Google Scholar 

  40. De La Garza R 2nd, Zorick T, London ED, Newton TF (2010) Evaluation of modafinil effects on cardiovascular, subjective, and reinforcing effects of methamphetamine in methamphetamine-dependent volunteers. Drug Alcohol Depend 106:173–180

    PubMed  CAS  Article  Google Scholar 

  41. de Saint Hilaire Z, Orosco M, Rouch C, Blanc G, Nicolaidis S (2001) Variations in extracellular monoamines in the prefrontal cortex and medial hypothalamus after modafinil administration: a microdialysis study in rats. Neuroreport 12:3533–3537

    PubMed  Article  Google Scholar 

  42. Dean AC, Sevak RJ, Monterosso JR, Hellemann G, Sugar CA, London ED (2011) Acute modafinil effects on attention and inhibitory control in methamphetamine-dependent humans. J Stud Alcohol Drugs 72:943–953

    PubMed  Google Scholar 

  43. Deroche-Gamonet V, Darnaudery M, Bruins-Slot L, Piat F, Le Moal M, Piazza PV (2002) Study of the addictive potential of modafinil in naive and cocaine-experienced rats. Psychopharmacology (Berl) 161:387–395

    CAS  Article  Google Scholar 

  44. Di Chiara G, Acquas E, Tanda G, Cadoni C (1993) Drugs of abuse: biochemical surrogates of specific aspects of natural reward? Biochem Soc Symp 59:65–81

    PubMed  Google Scholar 

  45. Di Chiara G, Tanda G, Bassareo V, Pontieri F, Acquas E, Fenu S, Cadoni C, Carboni E (1999) Drug addiction as a disorder of associative learning. Role of nucleus accumbens shell/extended amygdala dopamine. Ann N Y Acad Sci 877:461–485

    PubMed  Article  Google Scholar 

  46. Di Chiara G, Tanda G, Cadoni C, Acquas E, Bassareo V, Carboni E (1998) Homologies and differences in the action of drugs of abuse and a conventional reinforcer (food) on dopamine transmission: an interpretative framework of the mechanism of drug dependence. Adv Pharmacol 42:983–987

    PubMed  Article  Google Scholar 

  47. Dopheide MM, Morgan RE, Rodvelt KR, Schachtman TR, Miller DK (2007) Modafinil evokes striatal [(3)H]dopamine release and alters the subjective properties of stimulants. Eur J Pharmacol 568:112–123

    PubMed  CAS  Article  Google Scholar 

  48. Durazzo TC, Meyerhoff DJ, Nixon SJ (2012) A comprehensive assessment of neurocognition in middle-aged chronic cigarette smokers. Drug Alcohol Depend 122:105–111

    PubMed  Article  Google Scholar 

  49. Duteil J, Rambert FA, Pessonnier J, Hermant JF, Gombert R, Assous E (1990) Central alpha 1-adrenergic stimulation in relation to the behaviour stimulating effect of modafinil; studies with experimental animals. Eur J Pharmacol 180:49–58

    PubMed  CAS  Article  Google Scholar 

  50. Ellenbroek BA (2013) Histamine H3 receptors, The complex interaction with dopamine and its implications for addiction. Br J Pharmacol. doi:10.1111/bph.12221

  51. Engber TM, Dennis SA, Jones BE, Miller MS, Contreras PC (1998a) Brain regional substrates for the actions of the novel wake-promoting agent modafinil in the rat: comparison with amphetamine. Neuroscience 87:905–911

    PubMed  CAS  Article  Google Scholar 

  52. Engber TM, Koury EJ, Dennis SA, Miller MS, Contreras PC, Bhat RV (1998b) Differential patterns of regional c-Fos induction in the rat brain by amphetamine and the novel wakefulness-promoting agent modafinil. Neurosci Lett 241:95–98

    PubMed  CAS  Article  Google Scholar 

  53. Ersche KD, Turton AJ, Pradhan S, Bullmore ET, Robbins TW (2010) Drug addiction endophenotypes: impulsive versus sensation-seeking personality traits. Biol Psychiatry 68:770–773

    PubMed  Article  Google Scholar 

  54. Estrada A, Kelley AM, Webb CM, Athy JR, Crowley JS (2012) Modafinil as a replacement for dextroamphetamine for sustaining alertness in military helicopter pilots. Aviat Space Environ Med 83:556–564

    PubMed  CAS  Article  Google Scholar 

  55. Evans WH, Boitano S (2001) Connexin mimetic peptides: specific inhibitors of gap-junctional intercellular communication. Biochem Soc Trans 29:606–612

    PubMed  Article  Google Scholar 

  56. Faraone SV, Glatt SJ (2010) A comparison of the efficacy of medications for adult attention-deficit/hyperactivity disorder using meta-analysis of effect sizes. J Clin Psychiatry 71:754–763

    PubMed  Article  Google Scholar 

  57. Farrow TF, Hunter MD, Haque R, Spence SA (2006) Modafinil and unconstrained motor activity in schizophrenia: double-blind crossover placebo-controlled trial. Br J Psychiatry 189:461–462

    PubMed  Article  Google Scholar 

  58. Fauchey V, Jaber M, Caron MG, Bloch B, Le Moine C (2000) Differential regulation of the dopamine D1, D2 and D3 receptor gene expression and changes in the phenotype of the striatal neurons in mice lacking the dopamine transporter. Eur J Neurosci 12:19–26

    PubMed  CAS  Article  Google Scholar 

  59. Fenton MC, Keyes K, Geier T, Greenstein E, Skodol A, Krueger B, Grant BF, Hasin DS (2012) Psychiatric comorbidity and the persistence of drug use disorders in the United States. Addiction 107:599–609

    PubMed  Article  Google Scholar 

  60. Ferraro L, Antonelli T, Beggiato S, Cristina Tomasini M, Fuxe K, Tanganelli S (2013) The vigilance promoting drug modafinil modulates serotonin transmission in the rat prefrontal cortex and dorsal raphe nucleus. Possible relevance for its postulated antidepressant activity. Mini Rev Med Chem 13:478–492

    PubMed  CAS  Article  Google Scholar 

  61. Ferraro L, Antonelli T, O'Connor WT, Tanganelli S, Rambert FA, Fuxe K (1997) Modafinil: an antinarcoleptic drug with a different neurochemical profile to d-amphetamine and dopamine uptake blockers. Biol Psychiatry 42:1181–1183

    PubMed  CAS  Article  Google Scholar 

  62. Ferraro L, Antonelli T, O'Connor WT, Tanganelli S, Rambert FA, Fuxe K (1998) The effects of modafinil on striatal, pallidal and nigral GABA and glutamate release in the conscious rat: evidence for a preferential inhibition of striato-pallidal GABA transmission. Neurosci Lett 253:135–138

    PubMed  CAS  Article  Google Scholar 

  63. Ferraro L, Antonelli T, Tanganelli S, O'Connor WT, Perez de la Mora M, Mendez-Franco J, Rambert FA, Fuxe K (1999) The vigilance promoting drug modafinil increases extracellular glutamate levels in the medial preoptic area and the posterior hypothalamus of the conscious rat: prevention by local GABAA receptor blockade. Neuropsychopharmacology 20:346–356

    PubMed  CAS  Article  Google Scholar 

  64. Ferraro L, Fuxe K, Tanganelli S, Fernandez M, Rambert FA, Antonelli T (2000) Amplification of cortical serotonin release: a further neurochemical action of the vigilance-promoting drug modafinil. Neuropharmacology 39:1974–1983

    PubMed  CAS  Article  Google Scholar 

  65. Ferraro L, Fuxe K, Tanganelli S, Tomasini MC, Rambert FA, Antonelli T (2002) Differential enhancement of dialysate serotonin levels in distinct brain regions of the awake rat by modafinil: possible relevance for wakefulness and depression. J Neurosci Res 68:107–112

    PubMed  CAS  Article  Google Scholar 

  66. Ferraro L, O'Connor WT, Li XM, Rimondini R, Beani L, Ungerstedt U, Fuxe K, Tanganelli S (1996a) Evidence for a differential cholecystokinin-B and -A receptor regulation of GABA release in the rat nucleus accumbens mediated via dopaminergic and cholinergic mechanisms. Neuroscience 73:941–950

    PubMed  CAS  Article  Google Scholar 

  67. Ferraro L, Tanganelli S, O'Connor WT, Antonelli T, Rambert F, Fuxe K (1996b) The vigilance promoting drug modafinil decreases GABA release in the medial preoptic area and in the posterior hypothalamus of the awake rat: possible involvement of the serotonergic 5-HT3 receptor. Neurosci Lett 220:5–8

    PubMed  CAS  Article  Google Scholar 

  68. Fiocchi EM, Lin YG, Aimone L, Gruner JA, Flood DG (2009) Armodafinil promotes wakefulness and activates Fos in rat brain. Pharmacol Biochem Behav 92:549–557

    PubMed  CAS  Article  Google Scholar 

  69. Furey ML (2011) The prominent role of stimulus processing: cholinergic function and dysfunction in cognition. Curr Opin Neurol 24:364–370

    PubMed  CAS  Article  Google Scholar 

  70. Garavan H, Hester R (2007) The role of cognitive control in cocaine dependence. Neuropsychol Rev 17:337–345

    PubMed  Article  Google Scholar 

  71. Garcia-Rill E, Heister DS, Ye M, Charlesworth A, Hayar A (2007) Electrical coupling: novel mechanism for sleep–wake control. Sleep 30:1405–1414

    PubMed  Google Scholar 

  72. Gerrard P, Malcolm R (2007) Mechanisms of modafinil: a review of current research. Neuropsychiatr Dis Treat 3:349–364

    PubMed  CAS  Google Scholar 

  73. Getova D, Bowery NG (1998) The modulatory effects of high affinity GABA(B) receptor antagonists in an active avoidance learning paradigm in rats. Psychopharmacology (Berl) 137:369–373

    CAS  Article  Google Scholar 

  74. Ghahremani DG, Tabibnia G, Monterosso J, Hellemann G, Poldrack RA, London ED (2011) Effect of modafinil on learning and task-related brain activity in methamphetamine-dependent and healthy individuals. Neuropsychopharmacology 36:950–959

    PubMed  Article  Google Scholar 

  75. Gould TJ (2010) Addiction and cognition. Addict Sci Clin Pract 5:4–14

    PubMed  Google Scholar 

  76. Gozzi A, Colavito V, Seke Etet PF, Montanari D, Fiorini S, Tambalo S, Bifone A, Zucconi GG, Bentivoglio M (2012) Modulation of fronto-cortical activity by modafinil: a functional imaging and fos study in the rat. Neuropsychopharmacology 37:822–837

    PubMed  CAS  Article  Google Scholar 

  77. Graef S, Schonknecht P, Sabri O, Hegerl U (2011) Cholinergic receptor subtypes and their role in cognition, emotion, and vigilance control: an overview of preclinical and clinical findings. Psychopharmacology (Berl) 215:205–229

    CAS  Article  Google Scholar 

  78. Grahn JA, Parkinson JA, Owen AM (2009) The role of the basal ganglia in learning and memory: neuropsychological studies. Behav Brain Res 199:53–60

    PubMed  Article  Google Scholar 

  79. Gu Q (2002) Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience 111:815–835

    PubMed  CAS  Article  Google Scholar 

  80. Hart CL, Haney M, Vosburg SK, Rubin E, Foltin RW (2008) Smoked cocaine self-administration is decreased by modafinil. Neuropsychopharmacology 33:761–768

    PubMed  CAS  Article  Google Scholar 

  81. Havekes R, Abel T, Van der Zee EA (2011) The cholinergic system and neostriatal memory functions. Behav Brain Res 221:412–423

    PubMed  CAS  Article  Google Scholar 

  82. He DS, Burt JM (2000) Mechanism and selectivity of the effects of halothane on gap junction channel function. Circ Res 86:E104–E109

    PubMed  CAS  Article  Google Scholar 

  83. Heinzerling KG, Swanson AN, Kim S, Cederblom L, Moe A, Ling W, Shoptaw S (2010) Randomized, double-blind, placebo-controlled trial of modafinil for the treatment of methamphetamine dependence. Drug Alcohol Depend 109:20–29

    PubMed  CAS  Article  Google Scholar 

  84. Hester R, Lee N, Pennay A, Nielsen S, Ferris J (2010) The effects of modafinil treatment on neuropsychological and attentional bias performance during 7-day inpatient withdrawal from methamphetamine dependence. Exp Clin Psychopharmacol 18:489–497

    PubMed  CAS  Article  Google Scholar 

  85. Hollander JA, Pham D, Fowler CD, Kenny PJ (2012) Hypocretin-1 receptors regulate the reinforcing and reward-enhancing effects of cocaine: pharmacological and behavioral genetics evidence. Front Behav Neurosci 6:47

    PubMed  CAS  Article  Google Scholar 

  86. Homayoun H, Moghaddam B (2010) Group 5 metabotropic glutamate receptors: role in modulating cortical activity and relevance to cognition. Eur J Pharmacol 639:33–39

    PubMed  CAS  Article  Google Scholar 

  87. Horvath TL, Peyron C, Diano S, Ivanov A, Aston-Jones G, Kilduff TS, van Den Pol AN (1999) Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol 415:145–159

    PubMed  CAS  Article  Google Scholar 

  88. Hou RH, Freeman C, Langley RW, Szabadi E, Bradshaw CM (2005) Does modafinil activate the locus coeruleus in man? Comparison of modafinil and clonidine on arousal and autonomic functions in human volunteers. Psychopharmacology (Berl) 181:537–549

    CAS  Article  Google Scholar 

  89. Ishizuka T, Murakami M, Yamatodani A (2008) Involvement of central histaminergic systems in modafinil-induced but not methylphenidate-induced increases in locomotor activity in rats. Eur J Pharmacol 578:209–215

    PubMed  CAS  Article  Google Scholar 

  90. Ishizuka T, Murotani T, Yamatodani A (2010) Modanifil activates the histaminergic system through the orexinergic neurons. Neurosci Lett 483:193–196

    PubMed  CAS  Article  Google Scholar 

  91. Ishizuka T, Murotani T, Yamatodani A (2012) Action of modafinil through histaminergic and orexinergic neurons. Vitam Horm 89:259–278

    PubMed  CAS  Article  Google Scholar 

  92. Ishizuka T, Sakamoto Y, Sakurai T, Yamatodani A (2003) Modafinil increases histamine release in the anterior hypothalamus of rats. Neurosci Lett 339:143–146

    PubMed  CAS  Article  Google Scholar 

  93. Jasinski DR (2000) An evaluation of the abuse potential of modafinil using methylphenidate as a reference. J Psychopharmacol 14:53–60

    PubMed  CAS  Article  Google Scholar 

  94. Jasinski DR, Kovacevic-Ristanovic R (2000) Evaluation of the abuse liability of modafinil and other drugs for excessive daytime sleepiness associated with narcolepsy. Clin Neuropharmacol 23:149–156

    PubMed  CAS  Article  Google Scholar 

  95. Jay TM (2003) Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol 69:375–390

    PubMed  CAS  Article  Google Scholar 

  96. Jones SR, Gainetdinov RR, Hu XT, Cooper DC, Wightman RM, White FJ, Caron MG (1999) Loss of autoreceptor functions in mice lacking the dopamine transporter. Nat Neurosci 2:649–655

    PubMed  CAS  Article  Google Scholar 

  97. Jupp B, Dalley JW (2013) Behavioral endophenotypes of drug addiction: etiological insights from neuroimaging studies. Neuropharmacology. doi:10.1016/j.neuropharm.2013.05.041

  98. Kalechstein AD, De La Garza R 2nd, Newton TF (2010) Modafinil administration improves working memory in methamphetamine-dependent individuals who demonstrate baseline impairment. Am J Addict 19:340–344

    PubMed  Google Scholar 

  99. Kalechstein AD, Mahoney JJ 3rd, Yoon JH, Bennett R, De la Garza R 2nd (2013) Modafinil, but not escitalopram, improves working memory and sustained attention in long-term, high-dose cocaine users. Neuropharmacology 64:472–478

    PubMed  CAS  Article  Google Scholar 

  100. Karlsson C, Zook M, Ciccocioppo R, Gehlert DR, Thorsell A, Heilig M, Cippitelli A (2012) Melanin-concentrating hormone receptor 1 (MCH1-R) antagonism: reduced appetite for calories and suppression of addictive-like behaviors. Pharmacol Biochem Behav 102:400–406

    PubMed  CAS  Article  Google Scholar 

  101. Klinkenberg I, Sambeth A, Blokland A (2011) Acetylcholine and attention. Behav Brain Res 221:430–442

    PubMed  CAS  Article  Google Scholar 

  102. Knackstedt LA, Moussawi K, Lalumiere R, Schwendt M, Klugmann M, Kalivas PW (2010) Extinction training after cocaine self-administration induces glutamatergic plasticity to inhibit cocaine seeking. J Neurosci 30:7984–7992

    PubMed  CAS  Article  Google Scholar 

  103. Koob GF (1999) The role of the striatopallidal and extended amygdala systems in drug addiction. Ann N Y Acad Sci 877:445–460

    PubMed  CAS  Article  Google Scholar 

  104. Korotkova TM, Klyuch BP, Ponomarenko AA, Lin JS, Haas HL, Sergeeva OA (2007) Modafinil inhibits rat midbrain dopaminergic neurons through D2-like receptors. Neuropharmacology 52:626–633

    PubMed  CAS  Article  Google Scholar 

  105. Le Moal M, Koob GF (2007) Drug addiction: pathways to the disease and pathophysiological perspectives. Eur Neuropsychopharmacol 17:377–393

    PubMed  Article  CAS  Google Scholar 

  106. Lee N, Pennay A, Hester R, McKetin R, Nielsen S, Ferris J (2013) A pilot randomised controlled trial of modafinil during acute methamphetamine withdrawal: feasibility, tolerability and clinical outcomes. Drug Alcohol Rev 32:88–95

    PubMed  Article  Google Scholar 

  107. Leurs R, Smit MJ, Timmerman H (1995) Molecular pharmacological aspects of histamine receptors. Pharmacol Ther 66:413–463

    PubMed  CAS  Article  Google Scholar 

  108. Lin JS, Roussel B, Akaoka H, Fort P, Debilly G, Jouvet M (1992) Role of catecholamines in the modafinil and amphetamine induced wakefulness, a comparative pharmacological study in the cat. Brain Res 591:319–326

    PubMed  CAS  Article  Google Scholar 

  109. Lindsay SE, Gudelsky GA, Heaton PC (2006) Use of modafinil for the treatment of attention deficit/hyperactivity disorder. Ann Pharmacother 40:1829–1833

    PubMed  CAS  Article  Google Scholar 

  110. Loland CJ, Mereu M, Okunola OM, Cao J, Prisinzano TE, Mazier S, Kopajtic T, Shi L, Katz JL, Tanda G, Newman AH (2012) R-modafinil (armodafinil): a unique dopamine uptake inhibitor and potential medication for psychostimulant abuse. Biol Psychiatry 72:405–413

    PubMed  CAS  Article  Google Scholar 

  111. Luscher C, Malenka RC (2011) Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69:650–663

    PubMed  Article  CAS  Google Scholar 

  112. Madras BK, Xie Z, Lin Z, Jassen A, Panas H, Lynch L, Johnson R, Livni E, Spencer TJ, Bonab AA, Miller GM, Fischman AJ (2006) Modafinil occupies dopamine and norepinephrine transporters in vivo and modulates the transporters and trace amine activity in vitro. J Pharmacol Exp Ther 319:561–569

    PubMed  CAS  Article  Google Scholar 

  113. Mahler SV, Hensley-Simon M, Tahsili-Fahadan P, Lalumiere RT, Thomas C, Fallon RV, Kalivas PW, Aston-Jones G (2012a) Modafinil attenuates reinstatement of cocaine seeking: role for cystine-glutamate exchange and metabotropic glutamate receptors. Addict Biol. doi:10.1111/j.1369-1600.2012.00506.x

  114. Mahler SV, Smith RJ, Moorman DE, Sartor GC, Aston-Jones G (2012b) Multiple roles for orexin/hypocretin in addiction. Prog Brain Res 198:79–121

    PubMed  CAS  Article  Google Scholar 

  115. Makris AP, Rush CR, Frederich RC, Taylor AC, Kelly TH (2007) Behavioral and subjective effects of d-amphetamine and modafinil in healthy adults. Exp Clin Psychopharmacol 15:123–133

    PubMed  CAS  Article  Google Scholar 

  116. Malcolm R, Swayngim K, Donovan JL, DeVane CL, Elkashef A, Chiang N, Khan R, Mojsiak J, Myrick DL, Hedden S, Cochran K, Woolson RF (2006) Modafinil and cocaine interactions. Am J Drug Alcohol Abuse 32:577–587

    PubMed  Article  Google Scholar 

  117. Malenka RC (1994) Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78:535–538

    PubMed  CAS  Article  Google Scholar 

  118. Mann N, Bitsios P (2009) Modafinil treatment of amphetamine abuse in adult ADHD. J Psychopharmacol 23:468–471

    PubMed  CAS  Article  Google Scholar 

  119. Martinez-Raga J, Knecht C, Cepeda S (2008) Modafinil: a useful medication for cocaine addiction? Review of the evidence from neuropharmacological, experimental and clinical studies. Curr Drug Abuse Rev 1:213–221

    PubMed  CAS  Article  Google Scholar 

  120. McGaugh J, Mancino MJ, Feldman Z, Chopra MP, Gentry WB, Cargile C, Oliveto A (2009) Open-label pilot study of modafinil for methamphetamine dependence. J Clin Psychopharmacol 29:488–491

    PubMed  CAS  Article  Google Scholar 

  121. McNamara RK, Skelton RW (1996) Baclofen, a selective GABAB receptor agonist, dose-dependently impairs spatial learning in rats. Pharmacol Biochem Behav 53:303–308

    PubMed  CAS  Article  Google Scholar 

  122. Meneses A (1999) 5-HT system and cognition. Neurosci Biobehav Rev 23:1111–1125

    PubMed  CAS  Article  Google Scholar 

  123. Mignot E, Nishino S, Guilleminault C, Dement WC (1994) Modafinil binds to the dopamine uptake carrier site with low affinity. Sleep 17:436–437

    PubMed  CAS  Google Scholar 

  124. Minzenberg MJ, Carter CS (2008) Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacology 33:1477–1502

    PubMed  CAS  Article  Google Scholar 

  125. Minzenberg MJ, Yoon JH, Carter CS (2011) Modafinil modulation of the default mode network. Psychopharmacology (Berl) 215:23–31

    CAS  Article  Google Scholar 

  126. Monterosso JR, Aron AR, Cordova X, Xu J, London ED (2005) Deficits in response inhibition associated with chronic methamphetamine abuse. Drug Alcohol Depend 79:273–277

    PubMed  Article  Google Scholar 

  127. Morein-Zamir S, Turner DC, Sahakian BJ (2007) A review of the effects of modafinil on cognition in schizophrenia. Schizophr Bull 33:1298–1306

    PubMed  Article  Google Scholar 

  128. Muller U, Rowe JB, Rittman T, Lewis C, Robbins TW, Sahakian BJ (2013) Effects of modafinil on non-verbal cognition, task enjoyment and creative thinking in healthy volunteers. Neuropharmacology 64:490–495

    PubMed  CAS  Article  Google Scholar 

  129. Muller U, Steffenhagen N, Regenthal R, Bublak P (2004) Effects of modafinil on working memory processes in humans. Psychopharmacology (Berl) 177:161–169

    Article  CAS  Google Scholar 

  130. Munzar P, Tanda G, Justinova Z, Goldberg SR (2004) Histamine h3 receptor antagonists potentiate methamphetamine self-administration and methamphetamine-induced accumbal dopamine release. Neuropsychopharmacology 29:705–717

    PubMed  CAS  Article  Google Scholar 

  131. Murillo-Rodriguez E, Haro R, Palomero-Rivero M, Millan-Aldaco D, Drucker-Colin R (2007) Modafinil enhances extracellular levels of dopamine in the nucleus accumbens and increases wakefulness in rats. Behav Brain Res 176:353–357

    PubMed  CAS  Article  Google Scholar 

  132. Myrick H, Malcolm R, Taylor B, LaRowe S (2004) Modafinil: preclinical, clinical, and post-marketing surveillance—a review of abuse liability issues. Ann Clin Psychiatry 16:101–109

    PubMed  Article  Google Scholar 

  133. Nail-Boucherie K, Dourmap N, Jaffard R, Costentin J (1998) The specific dopamine uptake inhibitor GBR 12783 improves learning of inhibitory avoidance and increases hippocampal acetylcholine release. Brain Res Cogn Brain Res 7:203–205

    PubMed  CAS  Article  Google Scholar 

  134. Nic Dhonnchadha BA, Kantak KM (2011) Cognitive enhancers for facilitating drug cue extinction: insights from animal models. Pharmacol Biochem Behav 99:229–244

    PubMed  CAS  Article  Google Scholar 

  135. O'Brien CP, Charney DS, Lewis L, Cornish JW, Post RM, Woody GE, Zubieta JK, Anthony JC, Blaine JD, Bowden CL, Calabrese JR, Carroll K, Kosten T, Rounsaville B, Childress AR, Oslin DW, Pettinati HM, Davis MA, Demartino R, Drake RE, Fleming MF, Fricks L, Glassman AH, Levin FR, Nunes EV, Johnson RL, Jordan C, Kessler RC, Laden SK, Regier DA, Renner JA Jr, Ries RK, Sklar-Blake T, Weisner C (2004) Priority actions to improve the care of persons with co-occurring substance abuse and other mental disorders: a call to action. Biol Psychiatry 56:703–713

    PubMed  Article  Google Scholar 

  136. Partridge BJ, Bell SK, Lucke JC, Yeates S, Hall WD (2011) Smart drugs “as common as coffee”: media hype about neuroenhancement. PLoS One 6:e28416

    PubMed  CAS  Article  Google Scholar 

  137. Passani MB, Giannoni P, Bucherelli C, Baldi E, Blandina P (2007) Histamine in the brain: beyond sleep and memory. Biochem Pharmacol 73:1113–1122

    PubMed  CAS  Article  Google Scholar 

  138. Pierard C, Satabin P, Lagarde D, Barrere B, Guezennec CY, Menu JP, Peres M (1995) Effects of a vigilance-enhancing drug, modafinil, on rat brain metabolism: a 2D COSY 1H-NMR study. Brain Res 693:251–256

    PubMed  CAS  Article  Google Scholar 

  139. Porter JN, Olsen AS, Gurnsey K, Dugan BP, Jedema HP, Bradberry CW (2011) Chronic cocaine self-administration in rhesus monkeys: impact on associative learning, cognitive control, and working memory. J Neurosci 31:4926–4934

    PubMed  CAS  Article  Google Scholar 

  140. Pulay AJ, Stinson FS, Dawson DA, Goldstein RB, Chou SP, Huang B, Saha TD, Smith SM, Pickering RP, Ruan WJ, Hasin DS, Grant BF (2009) Prevalence, correlates, disability, and comorbidity of DSM-IV schizotypal personality disorder: results from the wave 2 national epidemiologic survey on alcohol and related conditions. Prim Care Companion J Clin Psychiatry 11:53–67

    PubMed  Article  Google Scholar 

  141. Raddatz R, Tao M, Hudkins RL (2010) Histamine H3 antagonists for treatment of cognitive deficits in CNS diseases. Curr Top Med Chem 10:153–169

    PubMed  CAS  Article  Google Scholar 

  142. Randall DC, Shneerson JM, Plaha KK, File SE (2003) Modafinil affects mood, but not cognitive function, in healthy young volunteers. Hum Psychopharmacol 18:163–173

    PubMed  CAS  Article  Google Scholar 

  143. Randall DC, Viswanath A, Bharania P, Elsabagh SM, Hartley DE, Shneerson JM, File SE (2005) Does modafinil enhance cognitive performance in young volunteers who are not sleep-deprived? J Clin Psychopharmacol 25:175–179

    PubMed  CAS  Article  Google Scholar 

  144. Rao Y, Liu ZW, Borok E, Rabenstein RL, Shanabrough M, Lu M, Picciotto MR, Horvath TL, Gao XB (2007) Prolonged wakefulness induces experience-dependent synaptic plasticity in mouse hypocretin/orexin neurons. J Clin Invest 117:4022–4033

    PubMed  CAS  Article  Google Scholar 

  145. Rao Y, Lu M, Ge F, Marsh DJ, Qian S, Wang AH, Picciotto MR, Gao XB (2008) Regulation of synaptic efficacy in hypocretin/orexin-containing neurons by melanin concentrating hormone in the lateral hypothalamus. J Neurosci 28:9101–9110

    PubMed  CAS  Article  Google Scholar 

  146. Rasetti R, Mattay VS, Stankevich B, Skjei K, Blasi G, Sambataro F, Arrillaga-Romany IC, Goldberg TE, Callicott JH, Apud JA, Weinberger DR (2010) Modulatory effects of modafinil on neural circuits regulating emotion and cognition. Neuropsychopharmacology 35:2101–2109

    PubMed  CAS  Article  Google Scholar 

  147. Recinto P, Samant AR, Chavez G, Kim A, Yuan CJ, Soleiman M, Grant Y, Edwards S, Wee S, Koob GF, George O, Mandyam CD (2012) Levels of neural progenitors in the hippocampus predict memory impairment and relapse to drug seeking as a function of excessive methamphetamine self-administration. Neuropsychopharmacology 37:1275–1287

    PubMed  CAS  Article  Google Scholar 

  148. Ricaurte GA, Markowska AL, Wenk GL, Hatzidimitriou G, Wlos J, Olton DS (1993) 3,4-Methylenedioxymethamphetamine, serotonin and memory. J Pharmacol Exp Ther 266:1097–1105

    PubMed  CAS  Google Scholar 

  149. Robbins TW (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl) 163:362–380

    CAS  Article  Google Scholar 

  150. Robbins TW (2005) Chemistry of the mind: neurochemical modulation of prefrontal cortical function. J Comp Neurol 493:140–146

    PubMed  CAS  Article  Google Scholar 

  151. Robertson P Jr, Hellriegel ET (2003) Clinical pharmacokinetic profile of modafinil. Clin Pharmacokinet 42:123–137

    PubMed  CAS  Article  Google Scholar 

  152. Rosenthal MH, Bryant SL (2004) Benefits of adjunct modafinil in an open-label, pilot study in patients with schizophrenia. Clin Neuropharmacol 27:38–43

    PubMed  CAS  Article  Google Scholar 

  153. Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41

    PubMed  CAS  Article  Google Scholar 

  154. Rush CR, Kelly TH, Hays LR, Baker RW, Wooten AF (2002a) Acute behavioral and physiological effects of modafinil in drug abusers. Behav Pharmacol 13:105–115

    PubMed  CAS  Article  Google Scholar 

  155. Rush CR, Kelly TH, Hays LR, Wooten AF (2002b) Discriminative-stimulus effects of modafinil in cocaine-trained humans. Drug Alcohol Depend 67:311–322

    PubMed  CAS  Article  Google Scholar 

  156. Sahakian BJ, Morein-Zamir S (2011) Neuroethical issues in cognitive enhancement. J Psychopharmacol 25:197–204

    PubMed  Article  Google Scholar 

  157. Salo R, Nordahl TE, Possin K, Leamon M, Gibson DR, Galloway GP, Flynn NM, Henik A, Pfefferbaum A, Sullivan EV (2002) Preliminary evidence of reduced cognitive inhibition in methamphetamine-dependent individuals. Psychiatry Res 111:65–74

    PubMed  Article  Google Scholar 

  158. Sarter M, Paolone G (2011) Deficits in attentional control: cholinergic mechanisms and circuitry-based treatment approaches. Behav Neurosci 125:825–835

    PubMed  CAS  Article  Google Scholar 

  159. Scammell TE, Estabrooke IV, McCarthy MT, Chemelli RM, Yanagisawa M, Miller MS, Saper CB (2000) Hypothalamic arousal regions are activated during modafinil-induced wakefulness. J Neurosci 20:8620–8628

    PubMed  CAS  Google Scholar 

  160. Schmitt U, Hiemke C (2002) Tiagabine, a gamma-amino-butyric acid transporter inhibitor impairs spatial learning of rats in the Morris water-maze. Behav Brain Res 133:391–394

    PubMed  CAS  Article  Google Scholar 

  161. Schnoll RA, Wileyto EP, Pinto A, Leone F, Gariti P, Siegel S, Perkins KA, Dackis C, Heitjan DF, Berrettini W, Lerman C (2008) A placebo-controlled trial of modafinil for nicotine dependence. Drug Alcohol Depend 98:86–93

    PubMed  CAS  Article  Google Scholar 

  162. Seal KH, Cohen G, Waldrop A, Cohen BE, Maguen S, Ren L (2011) Substance use disorders in Iraq and Afghanistan veterans in VA healthcare, 2001–2010: implications for screening, diagnosis and treatment. Drug Alcohol Depend 116:93–101

    PubMed  Article  Google Scholar 

  163. Seneca N, Gulyas B, Varrone A, Schou M, Airaksinen A, Tauscher J, Vandenhende F, Kielbasa W, Farde L, Innis RB, Halldin C (2006) Atomoxetine occupies the norepinephrine transporter in a dose-dependent fashion: a PET study in nonhuman primate brain using (S,S)-[18F]FMeNER-D2. Psychopharmacology (Berl) 188:119–127

    CAS  Article  Google Scholar 

  164. Shearer J, Darke S, Rodgers C, Slade T, van Beek I, Lewis J, Brady D, McKetin R, Mattick RP, Wodak A (2009) A double-blind, placebo-controlled trial of modafinil (200 mg/day) for methamphetamine dependence. Addiction 104:224–233

    PubMed  Article  Google Scholar 

  165. Sherin JE, Elmquist JK, Torrealba F, Saper CB (1998) Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 18:4705–4721

    PubMed  CAS  Google Scholar 

  166. Simon P, Hemet C, Ramassamy C, Costentin J (1995) Non-amphetaminic mechanism of stimulant locomotor effect of modafinil in mice. Eur Neuropsychopharmacol 5:509–514

    PubMed  CAS  Google Scholar 

  167. Sirvio J, Riekkinen P Jr, Jakala P, Riekkinen PJ (1994) Experimental studies on the role of serotonin in cognition. Prog Neurobiol 43:363–379

    PubMed  CAS  Article  Google Scholar 

  168. Smith A, Nutt D (1996) Noradrenaline and attention lapses. Nature 380:291

    PubMed  CAS  Article  Google Scholar 

  169. Smythies J (2005a) Section II. The dopamine system. Int Rev Neurobiol 64:123–172

    PubMed  Article  Google Scholar 

  170. Smythies J (2005b) Section III. The norepinephrine system. Int Rev Neurobiol 64:173–211

    PubMed  Article  Google Scholar 

  171. Sofuoglu M, DeVito EE, Waters AJ, Carroll KM (2013) Cognitive enhancement as a treatment for drug addictions. Neuropharmacology 64:452–463

    PubMed  CAS  Article  Google Scholar 

  172. Sofuoglu M, Sewell RA (2009) Norepinephrine and stimulant addiction. Addict Biol 14:119–129

    PubMed  CAS  Article  Google Scholar 

  173. Spencer TJ, Madras BK, Bonab AA, Dougherty DD, Clarke A, Mirto T, Martin J, Fischman AJ (2010) A positron emission tomography study examining the dopaminergic activity of armodafinil in adults using [11C]altropane and [11C]raclopride. Biol Psychiatry 68:964–970

    PubMed  CAS  Article  Google Scholar 

  174. Stoops WW, Lile JA, Fillmore MT, Glaser PE, Rush CR (2005) Reinforcing effects of modafinil: influence of dose and behavioral demands following drug administration. Psychopharmacology (Berl) 182:186–193

    CAS  Article  Google Scholar 

  175. Sutcliffe JG, de Lecea L (2002) The hypocretins: setting the arousal threshold. Nat Rev Neurosci 3:339–349

    PubMed  CAS  Article  Google Scholar 

  176. Sweeney CT, Sembower MA, Ertischek MD, Shiffman S, Schnoll SH (2013) Nonmedical use of prescription ADHD stimulants and preexisting patterns of drug abuse. J Addict Dis 32:1–10

    PubMed  Article  Google Scholar 

  177. Tahsili-Fahadan P, Carr GV, Harris GC, Aston-Jones G (2010) Modafinil blocks reinstatement of extinguished opiate-seeking in rats: mediation by a glutamate mechanism. Neuropsychopharmacology 35:2203–2210

    PubMed  CAS  Article  Google Scholar 

  178. Tamminga CA (2006) The neurobiology of cognition in schizophrenia. J Clin Psychiatry 67:e11

    PubMed  Article  Google Scholar 

  179. Tanda G, Kopajtic TA, Katz JL (2008) Cocaine-like neurochemical effects of antihistaminic medications. J Neurochem 106:147–157

    PubMed  CAS  Article  Google Scholar 

  180. Tanda G, Pontieri FE, Frau R, Di Chiara G (1997) Contribution of blockade of the noradrenaline carrier to the increase of extracellular dopamine in the rat prefrontal cortex by amphetamine and cocaine. Eur J Neurosci 9:2077–2085

    PubMed  CAS  Article  Google Scholar 

  181. Tanganelli S, Ferraro L, Bianchi C, Fuxe K (1994) 6-Hydroxy-dopamine treatment counteracts the reduction of cortical GABA release produced by the vigilance promoting drug modafinil in the awake freely moving guinea-pig. Neurosci Lett 171:201–204

    PubMed  CAS  Article  Google Scholar 

  182. Tanganelli S, Fuxe K, Ferraro L, Janson AM, Bianchi C (1992) Inhibitory effects of the psychoactive drug modafinil on gamma-aminobutyric acid outflow from the cerebral cortex of the awake freely moving guinea-pig. Possible involvement of 5-hydroxytryptamine mechanisms. Naunyn Schmiedebergs Arch Pharmacol 345:461–465

    PubMed  CAS  Article  Google Scholar 

  183. Tanganelli S, Perez de la Mora M, Ferraro L, Mendez-Franco J, Beani L, Rambert FA, Fuxe K (1995) Modafinil and cortical gamma-aminobutyric acid outflow. Modulation by 5-hydroxytryptamine neurotoxins. Eur J Pharmacol 273:63–71

    PubMed  CAS  Article  Google Scholar 

  184. Taylor FB, Russo J (2000) Efficacy of modafinil compared to dextroamphetamine for the treatment of attention deficit hyperactivity disorder in adults. J Child Adolesc Psychopharmacol 10:311–320

    PubMed  CAS  Article  Google Scholar 

  185. Terry AV Jr (2006) Muscarinic receptor antagonists in rats animal models of cognitive impairment. Taylor & Francis Group, LLC, Boca Raton

    Google Scholar 

  186. Tiligada E, Kyriakidis K, Chazot PL, Passani MB (2011) Histamine pharmacology and new CNS drug targets. CNS Neurosci Ther 17:620–628

    PubMed  CAS  Article  Google Scholar 

  187. Touret M, Sallanon-Moulin M, Fages C, Roudier V, Didier-Bazes M, Roussel B, Tardy M, Jouvet M (1994) Effects of modafinil-induced wakefulness on glutamine synthetase regulation in the rat brain. Brain Res Mol Brain Res 26:123–128

    PubMed  CAS  Article  Google Scholar 

  188. Turner D (2006) A review of the use of modafinil for attention-deficit hyperactivity disorder. Expert Rev Neurother 6:455–468

    PubMed  CAS  Article  Google Scholar 

  189. Turner DC, Robbins TW, Clark L, Aron AR, Dowson J, Sahakian BJ (2003) Cognitive enhancing effects of modafinil in healthy volunteers. Psychopharmacology (Berl) 165:260–269

    CAS  Google Scholar 

  190. Uguen M, Perrin D, Belliard S, Ligneau X, Beardsley PM, Lecomte JM, Schwartz JC (2013) Preclinical evaluation of the abuse potential of Pitolisant, a histamine H(3) receptor inverse agonist/antagonist compared with Modafinil. Br J Pharmacol 169:632–644

    PubMed  CAS  Article  Google Scholar 

  191. Urbano FJ, Leznik E, Llinas RR (2007) Modafinil enhances thalamocortical activity by increasing neuronal electrotonic coupling. Proc Natl Acad Sci U S A 104:12554–12559

    PubMed  CAS  Article  Google Scholar 

  192. Verdejo-Garcia A, Contreras-Rodriguez O, Fonseca F, Cuenca A, Soriano-Mas C, Rodriguez J, Pardo-Lozano R, Blanco-Hinojo L, de Sola Llopis S, Farre M, Torrens M, Pujol J, de la Torre R (2012) Functional alteration in frontolimbic systems relevant to moral judgment in cocaine-dependent subjects. Addict Biol. doi:10.1111/j.1369-1600.2012.00472.x

  193. Volkow ND, Fowler JS, Logan J, Alexoff D, Zhu W, Telang F, Wang GJ, Jayne M, Hooker JM, Wong C, Hubbard B, Carter P, Warner D, King P, Shea C, Xu Y, Muench L, Apelskog-Torres K (2009) Effects of modafinil on dopamine and dopamine transporters in the male human brain: clinical implications. Jama 301:1148–1154

    PubMed  CAS  Article  Google Scholar 

  194. Warot D, Corruble E, Payan C, Weil JS, Puech AJ (1993) Subjective effects of modafinil, a new central adrenergic stimulant in healthy volunteers: a comparison with amphetamine, caffeine and placebo. Eur Psychiatry 8:201–208

    Google Scholar 

  195. Waters KA, Burnham KE, O'Connor D, Dawson GR, Dias R (2005) Assessment of modafinil on attentional processes in a five-choice serial reaction time test in the rat. J Psychopharmacol 19:149–158

    PubMed  CAS  Article  Google Scholar 

  196. Weisler RH, Pandina GJ, Daly EJ, Cooper K, Gassmann-Mayer C (2012) Randomized clinical study of a histamine H3 receptor antagonist for the treatment of adults with attention-deficit hyperactivity disorder. CNS Drugs 26:421–434

    PubMed  CAS  Article  Google Scholar 

  197. Wesensten NJ (2006) Effects of modafinil on cognitive performance and alertness during sleep deprivation. Curr Pharm Des 12:2457–2471

    PubMed  CAS  Article  Google Scholar 

  198. Whitmore J, Hickey P, Doan B, Harrison R, Kisner J, Beltran T, McQuade J, Fischer J, Marks F, Air Force Research Lab Brooks AFB TX Human Effectiveness DIR/Biodynamics and Protection Div (2006) A double-blind placebo-controlled investigation of the efficacy of modafinil for maintaining alertness and performance in sustained military ground operations. Technical report January 2003–November 2005. Available at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA454558

  199. Wilens TE, Morrison NR, Prince J (2011) An update on the pharmacotherapy of attention-deficit/hyperactivity disorder in adults. Expert Rev Neurother 11:1443–1465

    PubMed  Article  Google Scholar 

  200. Wise RA (2006) Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc Lond B Biol Sci 361:1149–1158

    PubMed  CAS  Article  Google Scholar 

  201. Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM (2001) Dopaminergic role in stimulant-induced wakefulness. J Neurosci 21:1787–1794

    PubMed  CAS  Google Scholar 

  202. Wong CG, Bottiglieri T, Snead OC 3rd (2003) GABA, gamma-hydroxybutyric acid, and neurological disease. Ann Neurol 54(Suppl 6):S3–S12

    PubMed  CAS  Article  Google Scholar 

  203. Zarrindast MR (2006) Neurotransmitters and cognition. Exs 98:5–39

    PubMed  CAS  Google Scholar 

  204. Zeng BY, Smith LA, Pearce RK, Tel B, Chancharme L, Moachon G, Jenner P (2004) Modafinil prevents the MPTP-induced increase in GABAA receptor binding in the internal globus pallidus of MPTP-treated common marmosets. Neurosci Lett 354:6–9

    PubMed  CAS  Article  Google Scholar 

  205. Zolkowska D, Jain R, Rothman RB, Partilla JS, Roth BL, Setola V, Prisinzano TE, Baumann MH (2009) Evidence for the involvement of dopamine transporters in behavioral stimulant effects of modafinil. J Pharmacol Exp Ther 329:738–746

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the NIDA Intramural Research Program, NIH/DHHS.

Conflict of interest

All the authors declare no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Tanda.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mereu, M., Bonci, A., Newman, A.H. et al. The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders. Psychopharmacology 229, 415–434 (2013). https://doi.org/10.1007/s00213-013-3232-4

Download citation

Keywords

  • ADHD
  • Addiction
  • Cocaine
  • Cognition
  • Dopamine
  • Drug abuse
  • Methamphetamine
  • Modafinil
  • Psychostimulant