Psychopharmacology

, Volume 231, Issue 1, pp 231–242 | Cite as

Mining mouse behavior for patterns predicting psychiatric drug classification

Original Investigation

Abstract

Rationale

In psychiatric drug discovery, a critical step is predicting the psychopharmacological effect and therapeutic potential of novel (or repurposed) compounds early in the development process. This process is hampered by the need to utilize multiple disorder-specific and labor-intensive behavioral assays.

Objectives

This study aims to investigate the feasibility of a single high-throughput behavioral assay to classify psychiatric drugs into multiple psychopharmacological classes.

Methods

Using Pattern Array, a procedure for data mining exploratory behavior in mice, we mined ~100,000 complex movement patterns for those that best predict psychopharmacological class and dose. The best patterns were integrated into a classification model that assigns psychopharmacological compounds to one of six clinically relevant classes—antipsychotic, antidepressant, opioids, psychotomimetic, psychomotor stimulant, and α-adrenergic.

Results

Surprisingly, only a small number of well-chosen behaviors were required for successful class prediction. One of them, a behavior termed “universal drug detector”, was dose-dependently decreased by drugs from all classes, thus providing a sensitive index of psychopharmacological activity. In independent validation in a blind fashion, simulating the process of in vivo pre-clinical drug screening, the classification model correctly classified nine out of 11 “unknown” compounds. Interestingly, even “misclassifications” match known alternate therapeutic indications, illustrating drug “repurposing” potential.

Conclusions

Unlike standard animal models, the discovered classification model can be systematically updated to improve its predictive power and add therapeutic classes and subclasses with each additional diversification of the database. Our study demonstrates the power of data mining approaches for behavior analysis, using multiple measures in parallel for drug screening and behavioral phenotyping.

Keywords

Animal model Behavioral phenotyping SEE Open field Spatial behavior 

Supplementary material

213_2013_3230_MOESM1_ESM.docx (237 kb)
ESM 1(DOCX 236 kb)

References

  1. Agid Y, Buzsáki G, Diamond DM, Frackowiak R, Giedd J, Girault JA, Grace A, Lambert JJ, Manji H, Mayberg H, Popoli M, Prochiantz A, Richter-Levin G, Somogyi P, Spedding M, Svenningsson P, Weinberger D (2007) How can drug discovery for psychiatric disorders be improved? Nat Rev Drug Discov 6:189–201. doi:10.1038/nrd2217 PubMedCrossRefGoogle Scholar
  2. Benjamini Y, Yekutieli D (2005) False discovery rate-adjusted multiple confidence intervals for selected parameters. J Am Stat Assoc 100:71. doi:10.1198/016214504000001907 Google Scholar
  3. Benjamini Y, Lipkind D, Horev G, Fonio E, Kafkafi N, Golani I (2010) Ten ways to improve the quality of descriptions of whole-animal movement. Neurosci Biobehav Rev 34(8):1351–1365. doi:10.1016/j.neubiorev.2010.04.004 PubMedCrossRefGoogle Scholar
  4. Braida D et al (2009) Potential anxiolytic- and antidepressant-like effects of salvinorin A, the main active ingredient of Salvia divinorum, in rodents. Br J Pharmacol 157:844–853PubMedCrossRefGoogle Scholar
  5. Broom DC et al (2002) Convulsant activity of a non-peptidic delta-opioid receptor agonist is not required for its antidepressant-like effects in Sprague–Dawley rats. Psychopharmacology (Berlin) 164:42–48CrossRefGoogle Scholar
  6. Brunner D, Nestler E, Leahy E (2002) In need of high-throughput behavioral systems. Drug Discov Today 7(18 Suppl):S107–S112. doi:10.1016/S1359-6446(02)02423-6 PubMedCrossRefGoogle Scholar
  7. Carlezon WA Jr et al (2006) Depressive-like effects of the kappa-opioid receptor agonist salvinorin A on behavior and neurochemistry in rats. J Pharmacol Exp Ther 316:440–447PubMedCrossRefGoogle Scholar
  8. Conn PJ, Roth BL (2008) Opportunities and challenges of psychiatric drug discovery: roles for scientists in academic, industry, and government settings. Neuropsychopharmacology 33:2048–2060. doi:10.1038/sj.npp.1301638 PubMedCrossRefGoogle Scholar
  9. Coryell W (1996) Psychotic depression. J Clin Psychiatry 57(Suppl 3):27–31, discussion 49PubMedGoogle Scholar
  10. Crawley JN (2007) What's wrong with my mouse?: behavioral phenotyping of transgenic and knockout mice, 2nd edn. Wiley, ChichesterCrossRefGoogle Scholar
  11. Crowley JJ, Blendy JA, Lucki I (2005) Strain-dependent antidepressant-like effects of citalopram in the mouse tail suspension test. Psychopharmacology 183:257–264. doi:10.1007/s00213-005-0166-5 PubMedCrossRefGoogle Scholar
  12. Drai D, Golani I (2001) SEE: a tool for the visualization and analysis of rodent exploratory behavior. Neurosci Biobehav Rev 25:409–426. doi:10.1016/S0149-7634(01)00022-7 PubMedCrossRefGoogle Scholar
  13. Dubovsky SL, Thomas M (1992) Psychotic depression: advances in conceptualization and treatment. Hosp Community Psychiatry 43:1189–1198PubMedGoogle Scholar
  14. Geyer MA, Russo PV, Masten VL (1986) Multivariate assessment of locomotor behavior: pharmacological and behavioral analyses. Pharmacol Biochem Behav 25(1):277–288PubMedCrossRefGoogle Scholar
  15. Golub TR et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537. doi:10.1126/science.286.5439.531 PubMedCrossRefGoogle Scholar
  16. Gunther EC, Stone DJ, Gerwien RW, Bento P, Melvyn PH (2003) Prediction of clinical drug efficacy by classification of drug-induced genomic expression profiles in vitro. Proc Natl Acad Sci U S A 100:9608–9613. doi:10.1073/pnas.1632587100 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Henry BL, Minassian A, Young J, Paulus MP, Geyer MA, Perry W (2010) Cross-species assessments of motor and exploratory behavior related to bipolar disorder. Neurosci Biobehav Rev 34:1296–1306. doi:10.1016/j.neubiorev.2010.04.002 PubMedCentralPubMedCrossRefGoogle Scholar
  18. Kafkafi N, Elmer GI (2005a) Texture of locomotor path: a replicable characterization of a complex behavioral phenotype. Genes Brain Behav 4(7):431–443. doi:10.1111/j.1601-183X.2005.00126.x PubMedCrossRefGoogle Scholar
  19. Kafkafi N, Elmer GI (2005b) Activity density in the open field: a measure for differentiating the effect of psychostimulants. Pharmacol Biochem Behav 80(2):239–249. doi:10.1016/j.pbb.2004.11.004 PubMedCrossRefGoogle Scholar
  20. Kafkafi N, Benjamini Y, Sakov A, Elmer GI, Golani I (2005) Genotype–environment interactions in mouse behavior: a way out of the problem. Proc Natl Acad Sci U S A 102(12):4619–4624. doi:10.1073/pnas.0409554102 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Kafkafi N, Yekutieli D, Yarowsky P, Elmer GI (2008) Data mining in a behavioral test detects early symptoms in a model of amyotrophic lateral sclerosis. Behav Neurosci 122(4):777–787. doi:10.1037/0735-7044.122.4.777 PubMedCrossRefGoogle Scholar
  22. Kafkafi N, Yekutieli D, Elmer GI (2009) A data mining approach to in vivo classification of psychopharmacological drugs. Neuropsychopharmacology 34(3):607–623. doi:10.1038/npp.2008.103 PubMedCrossRefGoogle Scholar
  23. Koenig JI, Elmer GI, Shepard PD, Lee PR, Mayo C, Joy B, Hercher E, Brady DL (2005) Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia. Behav Brain Res 156(2):251–261PubMedCrossRefGoogle Scholar
  24. Nestler EJ, Hynan SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13:1161–1169. doi:10.1038/nn.2647 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Pangalos MN, Schechter LE, Hurko O (2007) Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat Rev Drug Discov 6(7):521–532. doi:10.1038/nrd2094 PubMedCrossRefGoogle Scholar
  26. Pataki CS, Feinberg DT, McGough JJ (2004) New drugs for the treatment of attention-deficit/hyperactivity disorder. Expert Opin Emerg Drugs 9:293–302PubMedCrossRefGoogle Scholar
  27. Petit-Demouliere B, Chenu F, Bourin M (2005) Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology 177:245–255. doi:10.1007/s00213-004-2048-7 PubMedCrossRefGoogle Scholar
  28. Quan MN, Zhang N, Wang YY, Zhang T, Yang Z (2011) Possible antidepressant effects and mechanisms of memantine in behaviors and synaptic plasticity of a depression rat model. Neuroscience 182:88–97PubMedCrossRefGoogle Scholar
  29. Rihel J et al (2010) Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327(5963):348–351. doi:10.1126/science.1183090 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Schopp DT (2011) Where will new neuroscience therapies come from? Nat Rev Drug Discov 10:715–716. doi:10.1038/nrd3559 CrossRefGoogle Scholar
  31. Schreiber S, Backer MM, Pick CG (1999) The antinociceptive effect of venlafaxine in mice is mediated through opioid and adrenergic mechanisms. Neurosci Lett 273:85–88PubMedCrossRefGoogle Scholar
  32. Tan PN, Steinbach M, Kumar V (2006) Introduction to data mining. Classification: basic concepts, decision trees and model evaluation. Addison–Wesley, BostonGoogle Scholar
  33. Tecott LH, Nestler EJ (2004) Neurobehavioral assessment in the information age. Nat Neurosci 7:462–466. doi:10.1038/nn1225 PubMedCrossRefGoogle Scholar
  34. Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural–neurobiological concordance in the effects of CMS. Neuropsychobiology 52(2):90–110. doi:10.1159/000087097 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of ZoologyTel Aviv UniversityTel-AvivIsrael
  2. 2.Department of Psychiatry and the Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations