Skip to main content
Log in

7,8-Dihydroxyflavone, a TrkB agonist, attenuates behavioral abnormalities and neurotoxicity in mice after administration of methamphetamine

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

It is widely recognized that methamphetamine (METH) induces behavioral abnormalities and dopaminergic neurotoxicity in the brain. Several lines of evidence suggest a role for brain-derived neurotrophic factor (BDNF) and its specific receptor, tropomyosin-related kinase (TrkB), in METH-induced behavioral abnormalities.

Objective

In this study, we examined whether 7,8-dihydroxyflavone (7,8-DHF), a novel potent TrkB agonist, could attenuate behavioral abnormalities and dopaminergic neurotoxicity in mice after administration of METH.

Results

Pretreatment with 7,8-DHF (3.0, 10, or 30 mg/kg), but not the inactive TrkB compound, 5,7-dihydroxyflavone (5,7-DHF) (30 mg/kg), attenuated hyperlocomotion in mice after a single administration of METH (3.0 mg/kg), in a dose-dependent manner. The development of behavioral sensitization after repeated administration of METH (3.0 mg/kg/day, once daily for 5 days) was significantly attenuated by pretreatment with 7,8-DHF (10 mg/kg). Furthermore, pretreatment and subsequent administration of 7,8-DHF (10 mg/kg) attenuated the reduction of dopamine transporter (DAT) in the striatum after repeated administration of METH (3.0 mg/kg × 3 at 3-hourly intervals). Treatment with ANA-12 (0.5 mg/kg), a potent TrkB antagonist, blocked the protective effects of 7,8-DHF on the METH-induced reduction of DAT in the striatum. Moreover, 7,8-DHF attenuated microglial activation in the striatum after repeated administration of METH.

Conclusions

These findings suggest that 7,8-DHF can ameliorate behavioral abnormalities as well as dopaminergic neurotoxicity in mice after administration of METH. It is likely, therefore, that TrkB agonists such as 7,8-DHF may prove to be potential therapeutic drugs for several symptoms associated with METH abuse in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albers DS, Sonsalla PK (1995) Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents. J Pharmacol Exp Ther 274:1104–1114

    Google Scholar 

  • Ali SF, Newport GD, Slikker W Jr (1996) Methamphetamine-induced dopaminergic toxicity in mice. Role of environmental temperature and pharmacological agents. Ann NY Acad Sci 801:187–198

    Article  CAS  PubMed  Google Scholar 

  • Andero R, Heldt SA, Ye K, Liu X, Armario A, Ressler KJ (2011) Effect of 7,8-dihydroxyflavone, a small-molecule TrkB agonist, in emotional learning. Am J Psychiatry 168:163–172

    Article  PubMed Central  PubMed  Google Scholar 

  • Barr A, Panenka W, MacEwan W, Thornton AE, Lang DJ, Honer WG, Lecomte T (2006) The need for speed: an update on methamphetamine addiction. J Psychiatry Neurosci 31:301–313

    PubMed Central  PubMed  Google Scholar 

  • Berhow MT, Russell DS, Terwilliger RZ, Beitner-Johnson D, Self DS, Lindsay RM, Nestler EJ (1995) Influence of neurotrophic factors on morphine- and cocaine-induced biochemical changes in the mesolimbic dopamine system. Neuroscience 68:969–979

    Article  CAS  PubMed  Google Scholar 

  • Blugeot A, Rivat C, Bouvier E, Molet J, Mouchard A, Zeau B, Bernard C, Benoliel JJ, Becker C (2011) Vulnerability to depression: from brain neuroplasticity to identification of biomarkers. J Neurosci 31:12889–12899

    Article  CAS  PubMed  Google Scholar 

  • Cadet JL, Jayanthi S, Deng X (2003) Speed kills: cellular and molecular bases of methamphetamine-induced nerve terminal degeneration and neuronal apoptosis. FASEB J 17:1775–1788

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Wu J, Zhang JC, Hashimoto K (2010) Recent topics on pharmacotherapy for amphetamine-type stimulants abuse and dependence. Curr Drug Abuse Rev 3:222–238

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Wu J, Zhang J, Fujita Y, Ishima T, Iyo M, Hashimoto K (2011) Protective effects of the antioxidant sulforaphane on behavioral changes and neurotoxicity in mice after the administration of methamphetamine. Psychopharmacology (Berl) 222:37–45

    Article  Google Scholar 

  • Chen PH, Huang MC, Lai YC, Chen PY, Liu HC (2013) Serum brain-derived neurotrophic factor levels were reduced during methamphetamine early withdrawal. Addiction Biol doi: 10.1111/j.1369-1600.2012.00444.x (in press)

  • Colfax G, Santos GM, Chu P, Vittinghoff E, Pluddemann A, Kumar S, Hart C (2010) Amphetamine-group substances and HIV. Lancet 376:458–474

    Article  PubMed  Google Scholar 

  • Davidson C, Gow AJ, Lee TH, Ellinwood EH (2001) Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Rev 6:1–22

    Article  Google Scholar 

  • Dean AC, Groman SM, Morales AM, London ED (2013) An evaluation of the evidence that methamphetamine abuse causes cognitive decline in humans. Neuropsychopharmacology 38:259–274

    Article  CAS  PubMed  Google Scholar 

  • Devi L, Ohno M (2012) 7,8-Dihydroxyflavone, a small-molecule TrkB agonist, reverses memory deficits and BACE1 elevation in a mouse model of Alzheimer's disease. Neuropsychopharmacology 37:434–444

    Article  CAS  PubMed  Google Scholar 

  • Franklin KBJ, Paxinos G (1997) The mouse brain in the stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Gonzales R, Mooney L, Rawson RA (2010) The methamphetamine problem in the United States. Annu Rev Public Health 31:385–398

    Article  PubMed  Google Scholar 

  • Graham DL, Krishnan V, Larson EB, Graham A, Edwards S, Bachtell RK, Simmons D, Gent LM, Berton O, Bolanos CA, DiLeone RJ, Parada LF, Nestler EJ, Self DW (2009) Tropomyosin-related kinase B in the mesolimbic dopamine system: region-specific effects on cocaine reward. Biol Psychiatry 65:696–701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guilarte TR, Nihei MK, McGlothan JL, Howard AS (2003) Methamphetamine induced deficits of brain monoaminergic neuronal markers: distal axotomy or neuronal plasticity. Neuroscience 122:499–513

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara H, Iyo M, Hashimoto K (2009) Mithramycin protects against dopaminergic neurotoxicity in the mouse brain after administration of methamphetamine. Brain Res 1301:189–196

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K (2007) New research on methamphetamine abuse. In: Toolaney GH (ed) New research on methamphetamine abuse. NovaScience, New York, pp 1–51

    Google Scholar 

  • Hashimoto K (2013) Sigma-1 receptor chaperone and brain-derived neurotrophic factor: emerging links between cardiovascular disease and depression. Prog Neurobiol 100:15–29

    Article  CAS  PubMed  Google Scholar 

  • Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y, Wilson WD, Xiao G, Blanchi B, Sun YE, Ye K (2010) A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci USA 107:2687–2692

    Article  CAS  PubMed  Google Scholar 

  • Kita T, Paku S, Takahashi M, Kubo K, Wagner GC, Nakashima T (1998) Methamphetamine-induced neurotoxicity in BALB/c, DBA/2N and C57BL/6N mice. Neuropharmacology 37:1177–1784

    Article  CAS  PubMed  Google Scholar 

  • Koike K, Hashimoto K, Fukami G, Okamura N, Zhang L, Zhang L, Ohgake S, Koizumi H, Matsuzawa D, Kawamura N, Shimizu E, Iyo M (2005) The immunophilin ligand FK506 protects against methamphetamine-induced dopaminergic neurotoxicity in mouse striatum. Neuropharmacology 48:391–397

    Article  CAS  PubMed  Google Scholar 

  • LaVoie MJ, Card JP, Hastings TG (2004) Microglia activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity. Exp Neurol 187:47–57

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Chan CB, Jang SW, Pradoldej S, Huang J, He K, Phun LH, France S, Xiao G, Jia Y, Luo HR, Ye K (2010) A Synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect. J Med Chem 53:8274–8286

    Article  CAS  Google Scholar 

  • Lobo MK, Covington HE 3rd, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, Dietz DM, Zaman S, Koo JW, Kennedy PJ, Mouzon E, Mogri M, Neve RL, Deisseroth K, Han MH, Nestler EJ (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330:385–390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McGinty JF, Bache AJ, Coleman NT, Sun WL (2011) The role of BDNF/TrkB signaling in acute amphetamine-induced locomotor activity and opioid peptide gene expression in the rat dorsal striatum. Front Syst Neurosci 5:60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Narita M, Aoki K, Takagi M, Yajima Y, Suzuki T (2003) Implication of brain-derived neurotrophic factor in the release of dopamine and dopamine-related behaviors induced by methamphetamine. Neuroscience 119:767–775

    Article  CAS  PubMed  Google Scholar 

  • National Institute on Drug Abuse (2002) Research report series—methamphetamine abuse and addiction. NIDA, Rockville

    Google Scholar 

  • Pierce RC, Kalivas PW (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Rev 25:192–216

    Article  CAS  PubMed  Google Scholar 

  • Ren Q, Zhang JC, Fujita Y, Ma M, Wu J, Hashimoto K (2013) Effects of TrkB agonist 7,8-dihydroxyflavone on sensory gating deficits in mice after administration of methamphetamine. Pharmacol Biochem Behav 106:124–127

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198

    Article  CAS  PubMed  Google Scholar 

  • Russo SJ, Mazei-Robison MS, Ables JL, Nestler EJ (2009) Neurotrophic factors and structural plasticity in addiction. Neuropharmacology 56:73–82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seiden LS, Sabol KE, Ricaurte GA (1993) Amphetamine: effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol 33:639–677

    Article  CAS  PubMed  Google Scholar 

  • Sekine Y, Iyo M, Ouchi Y, Matsunaga T, Tsukada H, Okada H, Yoshikawa E, Futabayashi M, Takei N, Mori N (2001) Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. Am J Psychiatry 158:1206–1214

    Article  CAS  PubMed  Google Scholar 

  • Thomas DM, Kuhn DM (2005) Attenuated microglial activation mediates tolerance to the neurotoxic effects of methamphetamine. J Neurochem 92:790–797

    Article  CAS  PubMed  Google Scholar 

  • Thomas DM, Walker PD, Benjamins JA, Geddes TJ, Kuhn DM (2004) Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglia activation. J Pharmacol Exp Ther 311:1–7

    Article  CAS  PubMed  Google Scholar 

  • Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl) 151:99–120

    Article  CAS  Google Scholar 

  • Volkow ND, Chang L, Wang GJ, Folwer JS, Ding YS, Sedler M, Gatley SJ, Hitzemann R, Ding YS, Logan J, Wong C, Miller EN (2001) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 158:377–382

    Article  CAS  PubMed  Google Scholar 

  • White FJ, Kalivas PW (1998) Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend 51:141–153

    Article  CAS  PubMed  Google Scholar 

  • Wilson JM, Kalansinsky KS, Levey AI, Bergeron C, Reiber G, Anthony RM, Schmunk GA, Shannak K, Haycock JW, Kish SJ (1996) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 2:699–703

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Kitaichi K, Fujimoto Y, Nakayama H, Shimizu E, Iyo M, Hashimoto K (2006) Protective effects of minocycline on behavioral changes and neurotoxicity in mice after administration of methamphetamine. Prog Neuro-Psychopharmacol Biol Psychiatry 30:1381–1393

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research (to K.H.) on Innovative Areas of the Ministry of Education, Culture, Sports, Science and Technology, Japan, and a Grant-in-Aid for Scientific Research (B) (to K.H.) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Hashimoto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 42 kb)

ESM 2

(JPEG 72 kb)

ESM 3

(JPEG 130 kb)

ESM 4

(DOC 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Q., Zhang, JC., Ma, M. et al. 7,8-Dihydroxyflavone, a TrkB agonist, attenuates behavioral abnormalities and neurotoxicity in mice after administration of methamphetamine. Psychopharmacology 231, 159–166 (2014). https://doi.org/10.1007/s00213-013-3221-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3221-7

Keywords

Navigation