Skip to main content

Advertisement

Log in

Effects of sub-chronic donepezil on brain Abeta and cognition in a mouse model of Alzheimer’s disease

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Acetylcholinesterase inhibitors (AChEIs) are approved to treat the symptoms of mild to moderate Alzheimer’s disease by restoring acetylcholine levels at synapses where the neurotransmitter has been depleted due to neurodegeneration. This assumption is challenged by more recent clinical studies suggesting the potential for disease-modifying effects of AChEIs as well as in vitro studies showing neuroprotective effects. However, few preclinical studies have assessed whether the improvement of cognitive symptoms may be mediated by reductions in Abeta or Tau pathology.

Objectives

The objective of the present study was to determine whether short-duration treatment with donepezil could improve spatial learning and memory in transgenic mice overexpressing mutant human amyloid precursor protein (hAPP) and presenilin 1 (PS1) (Dewachter et al., J Neurosci 20(17):6452–6458, 2000) after amyloid pathology has fully developed, consistent with early stages of Alzheimer’sdisease in humans. In parallel, the effect of donepezil treatment on brain amyloid, Tau, and glial endpoints was measured.

Results

This study showed a significant improvement in reference memory in hAPP/PS1 mice along with dose-dependent reductions in brain amyloid-β (Aβ).

Conclusion

These results suggest that the observed cognitive improvement produced by donepezil in Alzheimer’s disease may be due, at least in part, to reduction of brain Aβ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akasofu S, Kosasa T, Kimura M, Kubota A (2003) Protective effect of donepezil in a primary culture of rat cortical neurons exposed to oxygen-glucose deprivation. Eur J Pharmacol 472(1–2):57–63

    Article  PubMed  CAS  Google Scholar 

  • Ashe KH, Zahs KR (2010) Probing the biology of Alzheimer’s disease in mice. Neuron 66(5):631–645

    Article  PubMed  CAS  Google Scholar 

  • Ballard CG, Chalmers KA, Tod C, McKeith IG, O’Brien JT, Wilock G, Love S, Perry EK (2007) Cholinesterase inhibitors reduce cortical Abeta in dementia with Lewy bodies. Neurology 68(20):1726–1179

    Article  PubMed  CAS  Google Scholar 

  • Ballatore C, Lee VM, Trojanowski J (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8(9):663–672

    Article  PubMed  CAS  Google Scholar 

  • Beach TG, Kuo YM, Spiegel K, Emmerling MR, Sue LI, Kokjohn K, Roher AE (2000) The cholinergic deficit coincides with Aβ deposition at the earliest histopathologic stages of Alzheimer disease. J Neuropathol Exp Neurol 59(4):308–313

    PubMed  CAS  Google Scholar 

  • Bejar C, Wang RH, Weinstock M (1999) Effect of rivastigmine on scopolamine-induced memory impairment in rats. Eur J Pharmacol 383(3):231–240

    Article  PubMed  CAS  Google Scholar 

  • Bitan G, Fradinger EA, Spring SM, Teplow DB (2005) Neurotoxic protein oligomers—what you see is not always what you get. Amyloid 12(2):88–95

    Article  PubMed  Google Scholar 

  • Bitner RS, Nikkel AL, Markosyan S, Otte S, Puttfarcken P, Gopalakrishnan M (2009) Selective alpha7 nicotinic acetylcholine receptor activation regulates glycogen synthase kinase3beta and decreases tau phosphorylation in vivo. Brain Res 1265:65–74

    Article  PubMed  CAS  Google Scholar 

  • Bitner RS, Bunnelle WH, Decker MW, Drescher KU, Kohlhaas KL, Markosyan S, Marsh KC, Nikkel AL, Browman K, Radek R, Anderson DJ, Buccafusco J, Gopalakrishnan M (2010) In vivo pharmacological characterization of a novel selective alpha7 neuronal nicotinic acetylcholine receptor agonist ABT-107: preclinical considerations in Alzheimer’s disease. J Pharmacol Exp Ther 334(3):875–886

    Article  PubMed  CAS  Google Scholar 

  • Black SE, Doody R, Li H, McRae T, Jambor KM, Xu Y, Sun Y, Perdomo CA, Richardson S (2007) Donepezil preserves cognition and global function in patients with severe Alzheimer disease. Neurology 69(5):459–469

    Article  PubMed  CAS  Google Scholar 

  • Braida D, Paladini E, Griffini P, Lamperti M, Maggi A, Sala M (1996) An inverted U-shaped curve for heptylphysostigmine on radial maze performance in rats: comparison with other cholinesterase inhibitors. Eur J Pharmacol 302(1–3):13–20

    Article  PubMed  CAS  Google Scholar 

  • Bruggink KA, Müller M, Kuiperij HB, Verbeek MM (2012) Methods for analysis of amyloid-β aggregates. J Alzheimers Dis 28(4):735–758

    PubMed  CAS  Google Scholar 

  • Buccafusco JJ (2009) The revival of scopolamine reversal for the assessment of cognition-enhancing drugs. In: Buccafusco JJ (ed) Methods of behavior analysis in neuroscience, 2nd edn. CRC, Boca Raton, Chapter 17

    Google Scholar 

  • Burns A, Rossor M, Hecker J, Gauthier S, Petit H, Möller HJ, Rogers SL, Friedhoff LT (1999) The effects of donepezil in Alzheimer’s disease—results from a multinational trial. Dement Geriatr Cogn Disord 10(3):237–244

    Article  PubMed  CAS  Google Scholar 

  • Caccamo A, Oddo S, Billings LM, Green KN, Martinez-Coria H, Fisher A, LaFerla FM (2006) M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron 49(5):671–682

    Article  PubMed  CAS  Google Scholar 

  • Cummings JL, Back C (1998) The cholinergic hypothesis of neuropsychiatric symptoms in Alzheimer’s disease. Am J Geriatr Psychiatry 6(2 Suppl 1):S64–S78

    Article  PubMed  CAS  Google Scholar 

  • Das UN (2007) Acetylcholinesterase and butyrylcholinesterase as possible markers of low-grade systemic inflammation. Med Sci Monit 13(12):RA214–RA221, Review

    PubMed  CAS  Google Scholar 

  • Davis AA, Fritz JJ, Wess J, Lah JJ, Levey AI (2010) Deletion of M1 muscarinic acetylcholine receptors increases amyloid pathology in vitro and in vivo. J Neurosci 30(12):4190–4196

    Article  PubMed  CAS  Google Scholar 

  • Deng J, Shen C, Wang YJ, Zhang M, Li J, Xu ZQ, Gao CY, Fang CQ, Zhou HD (2010) Nicotine exacerbates tau phosphorylation and cognitive impairment induced by amyloid-beta 25–35 in rats. Eur J Pharmacol 637(1–3):83–88

    Article  PubMed  CAS  Google Scholar 

  • Dewachter I, Van Dorpe J, Smeijers L, Gilis M, Kuipéri C, Laenen I, Caluwaerts N, Moechars D, Checler F, Vanderstichele H, Van Leuven F (2000) Aging increased amyloid peptide and caused amyloid plaques in brain of old APP/V717I transgenic mice by a different mechanism than mutant presenilin1. J Neurosci 20(17):6452–6458

    PubMed  CAS  Google Scholar 

  • Dong H, Csernansky CA, Martin MV, Bertchume A, Vallera D, Csernansky JG (2005) Acetylcholinesterase inhibitors ameliorate behavioral deficits in the Tg2576 mouse model of Alzheimer’s disease. Psychopharmacology (Berlin) 181(1):145–152

    Article  CAS  Google Scholar 

  • Dong H, Yuede CM, Coughlan CA, Murphy KM, Csernansky JG (2009) Effects of donepezil on amyloid-beta and synapse density in the Tg2576 mouse model of Alzheimer’s disease. Brain Res 1303:169–178

    Article  PubMed  CAS  Google Scholar 

  • Feldman H, Gauthier S, Hecker J, Vellas B, Subbiah P, Whalen E, Donepezil MSAD Study Investigators Group (2001) A 24-week, randomized, double-blind study of donepezil in moderate to severe Alzheimer’s disease. Neurology 57(4):613–620

    Article  PubMed  CAS  Google Scholar 

  • Feldman H, Gauthier S, Hecker J, Vellas B, Xu Y, Ieni JR, Schwam EM, Donepezil MSAD Study Investigators Group (2005) Efficacy and safety of donepezil in patients with more severe Alzheimer’s disease: a subgroup analysis from a randomized, placebo-controlled trial. Int J Geriatr Psychiatry 20(6):559–569

    Article  PubMed  Google Scholar 

  • Fisher A (2012) Cholinergic modulation of amyloid precursor protein processing with emphasis on M1 muscarinic receptor: perspectives and challenges in treatment of Alzheimer’s disease. J Neurochem 120(Suppl 1):22–33

    Article  PubMed  CAS  Google Scholar 

  • Gordon MN, Holcomb LA, Jantzen PT, DiCarlo G, Wilcock D, Boyett KW, Connor K, Melachrino J, O’Callaghan JP, Morgan D (2002) Time course of the development of Alzheimer-like pathology in the doubly transgenic PS1+APP mouse. Exp Neurol 173:183–195

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Kazui H, Matsumoto K, Nakano Y, Yasuda M, Mori E (2005) Does donepezil treatment slow the progression of hippocampal atrophy in patients with Alzheimer’s disease? Am J Psychiatry 162(4):676–682

    Article  PubMed  Google Scholar 

  • Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA (2003) Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 60(8):1119–1122

    Article  PubMed  Google Scholar 

  • Heneka MT, Sastre M, Dumitrescu-Ozimek L, Dewachter I, Walter J, Klockgether T, Van Leuven F (2005) Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J Neuroinflammation 2(22)

  • Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, Wright K, Saad I, Mueller R, Morgan D, Sanders S, Zehr C, O’Campo K, Hardy J, Prada CM, Eckman C, Younkin S, Hsiao K, Duff K (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4:97–100

    Article  PubMed  CAS  Google Scholar 

  • Hwang J, Hwang H, Lee HW, Suk K (2010) Microglia signaling as a target of donepezil. Neuropharmacology 58(7):1122–1129, Epub 2010 Feb 11

    Article  PubMed  CAS  Google Scholar 

  • Jeon S, Bose S, Hur J, Jun K, Kim YK, Cho KS, Koo BS (2011) A modified formulation of Chinese traditional medicine improves memory impairment and reduces Aβ level in the Tg-APPswe/PS1dE9 mouse model of Alzheimer’s disease. J Ethnopharmacol 137(1):783–789

    Article  PubMed  Google Scholar 

  • Krishnan KR, Charles HC, Doraiswamy PM, Mintzer J, Weisler R, Yu X, Perdomo C, Ieni JR, Rogers S (2003) Randomized, placebo-controlled trial of the effects of donepezil on neuronal markers and hippocampal volumes in Alzheimer’s disease. Am J Psychiatry 160(11):2003–2011

    Article  PubMed  Google Scholar 

  • Lenz RA, Baker JD, Locke C, Rueter LE, Mohler EG, Wesnes K, Abi-Saab W, Saltarelli MD (2012) The scopolamine model as a pharmacodynamic marker in early drug development. Psychopharmacology (Berlin) 220(1):97–107

    Article  CAS  Google Scholar 

  • Lindner MD, Hogan JB, Hodges DB Jr, Orie AF, Chen P, Corsa JA, Leet JE, Gillman KW, Rose GM, Jones KM, Gribkoff VK (2006) Donepezil primarily attenuates scopolamine-induced deficits in psychomotor function, with moderate effects on simple conditioning and attention, and small effects on working memory and spatial mapping. Psychopharmacology (Berlin) 188(4):629–640

    Article  CAS  Google Scholar 

  • Lopez OL, Becker JT, Saxton J, Sweet RA, Klunk W, DeKosky ST (2005) Alteration of a clinically meaningful outcome in the natural history of Alzheimer’s disease by cholinesterase inhibition. J Am Geriatr Soc 53(1):83–87

    Article  PubMed  Google Scholar 

  • Lu PH, Edland SD, Teng E, Tingus K, Petersen RC, Cummings JL, Alzheimer’s Disease Cooperative Study Group (2009) Donepezil delays progression to AD in MCI subjects with depressive symptoms. Neurology 72(24):2115–2121

    Article  PubMed  CAS  Google Scholar 

  • Masuoka T, Kamei C (2009) The role of nicotinic receptors in the amelioration of cholinesterase inhibitors in scopolamine-induced memory deficits. Psychopharmacology (Berlin) 206(2):259–265

    Article  CAS  Google Scholar 

  • Medeiros R, Kitazawa M, Caccamo A, Baglietto-Vargas D, Estrada-Hernandez T, Cribbs DH, Fisher A, LaFerla FM (2011) Loss of muscarinic M1 receptor exacerbates Alzheimer’s disease-like pathology and cognitive decline. Am J Pathol 179(2):980–991

    Article  PubMed  CAS  Google Scholar 

  • Moechars D, Dewachter I, Lorent K, Reversé D, Baekelandt V, Naidu A, Tesseur I, Spittaels K, Haute CV, Checler F, Godaux E, Cordell B, Van Leuven F (1999) Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem 274(10):6483–6492

    Article  PubMed  CAS  Google Scholar 

  • Mohs RC, Doody RS, Morris JC, Ieni JR, Rogers SL, Perdomo CA, Pratt RD, “312” Study Group (2001) A 1-year, placebo-controlled preservation of function survival study of donepezil in AD patients. Neurology 57(3):481–488

    Google Scholar 

  • Morris RG, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297(5868):681–683

    Article  PubMed  CAS  Google Scholar 

  • Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of tau. Neuron 70(3):410–426

    Article  PubMed  CAS  Google Scholar 

  • Mullan M (2000) Genetic contributions to causes of Alzheimer’s disease: current perspectives and future directions, pp 307–309. In: New insights into genetics and pathophysiology of Alzheimer’s disease: what are the clinical and therapeutic implications? J Clin Psychiatry 61(4):307–15

    Google Scholar 

  • Nitsch RM, Deng M, Tennis M, Schoenfeld D, Growdon JH (2000) The selective muscarinic M1 agonist AF102B decreases levels of total Aβ in cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol 48(6):913–918

    Article  PubMed  CAS  Google Scholar 

  • Noh MY, Koh SH, Kim Y, Kim HY, Cho GW, Kim SH (2009) Neuroprotective effects of donepezil through inhibition of GSK-3 activity in amyloid-beta-induced neuronal cell death. J Neurochem 108(5):1116–1125

    Article  PubMed  CAS  Google Scholar 

  • Oddo S, Caccamo A, Green KN, Liang K, Tran L, Chen Y, Leslie FM, LaFerla FM (2005) Chronic nicotine administration exacerbates tau pathology in a transgenic model of Alzheimer’s disease. Proc Natl Acad Sci U S A 102(8):3046–3051

    Article  PubMed  CAS  Google Scholar 

  • Raskind MA, Peskind ER, Wessel T, Yuan W (2000) Galantamine in AD: a 6-month randomized, placebo-controlled trial with a 6-month extension. The Galantamine USA-1 Study Group. Neurology 54(12):2261–2268

    Article  PubMed  CAS  Google Scholar 

  • Rogers SL, Farlow MR, Doody RS, Mohs R, Friedhoff LT (1998) A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Donepezil Study Group. Neurology 50(1):136–145

    Article  PubMed  CAS  Google Scholar 

  • Romberg C, Mattson MP, Mughal MR, Bussey TJ, Saksida LM (2011) Impaired attention in the 3xTgAD mouse model of Alzheimer’s disease: rescue by donepezil (Aricept). J Neurosci 31(9):3500–3507

    Article  PubMed  CAS  Google Scholar 

  • Sabbagh MN, Walker DG, Reid RT, Stadnick T, Anand K, Lue LF (2008) Absence of effect of chronic nicotine administration on amyloid beta peptide levels in transgenic mice overexpressing mutated human APP (Sw, Ind). Neurosci Lett 448(2):217–220

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192(1):106–113

    Article  PubMed  CAS  Google Scholar 

  • Seltzer B (2005) Donepezil: a review. Expert Opin Drug Metab Toxicol 1(3):527–536, Review

    Article  PubMed  CAS  Google Scholar 

  • Takada Y, Yonezawa A, Kume T, Katsuki H, Kaneko S, Sugimoto H, Akaike A (2003) Nicotinic acetylcholine receptor-mediated neuroprotection by donepezil against glutamate neurotoxicity in rat cortical neurons. J Pharmacol Exp Ther 306(2):772–777

    Article  PubMed  CAS  Google Scholar 

  • Takata K, Kitamura Y, Saeki M, Terada M, Kagitani S, Kitamura R, Fujikawa Y, Maelicke A, Tomimoto H, Taniguchi T, Shimohama S (2010) Galantamine-induced amyloid-{beta} clearance mediated via stimulation of microglial nicotinic acetylcholine receptors. J Biol Chem 285(51):40180–40191

    Article  PubMed  CAS  Google Scholar 

  • Terwel D, Muyllaert D, Dewachter I, Borghgraef P, Croes S, Devijver H, Van Leuven F (2008) Amyloid activates GSK-3beta to aggravate neuronal tauopathy in bigenic mice. Am J Pathol 172(3):786–798

    Article  PubMed  CAS  Google Scholar 

  • Toyn JH, Lin XA, Thompson MW, Guss V, Meredith JE Jr, Sankaranarayanan S, Barrezueta N, Corradi J, Majumdar A, Small DL, Hansard M, Lanthorn T, Westphal RS, Albright CF (2010) Viable mouse gene ablations that robustly alter brain Aβ levels are rare. BMC Neurosci 11:143

    Article  PubMed  Google Scholar 

  • Tsunekawa H, Noda Y, Mouri A, Yoneda F, Nabeshima T (2008) Synergistic effects of selegiline and donepezil on cognitive impairment induced by amyloid beta (25–35). Behav Brain Res 190(2):224–232

    Article  PubMed  CAS  Google Scholar 

  • Tyagi E, Agrawal R, Nath C, Shukla R (2007) Effect of anti-dementia drugs on LPS induced neuroinflammation in mice. Life Sci 80(21):1977–1983

    Article  PubMed  CAS  Google Scholar 

  • Van Dam D, Abramowski D, Staufenbiel M, De Deyn PP (2005) Symptomatic effect of donepezil, rivastigmine, galantamine and memantine on cognitive deficits in the APP23 model. Psychopharmacology (Berlin) 180(1):177–190

    Article  CAS  Google Scholar 

  • Van Dam D, Coen K, De Deyn PP (2008) Cognitive evaluation of disease-modifying efficacy of donepezil in the APP23 mouse model for Alzheimer’s disease. Psychopharmacology (Berlin) 197(1):37–43

    Article  Google Scholar 

  • Watanabe T, Iwasaki K, Ishikane S, Naitou T, Yoshimitsu Y, Yamagata N, Ozdemir MB, Takasaki K, Egashira N, Mishima K, Fujiwara M (2008) Spatial memory impairment without apoptosis induced by the combination of beta-amyloid oligomers and cerebral ischemia is related to decreased acetylcholine release in rats. J Pharmacol Sci 106(1):84–91

    Article  PubMed  CAS  Google Scholar 

  • Watt AD, Perez KA, Rembach A, Sherrat NA, Hung LW, Johanssen T, McLean CA, Kok WM, Hutton CA, Fodero-Tavoletti M, Masters CL, Villemagne VL, Barnham KJ (2013) Oligomers, fact or artefact? SDS-PAGE induces dimerization of β-amyloid in human brain samples. Acta Neuropathol 125(4):549–564

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson D, Schindler R, Schwam E, Waldemar G, Jones RW, Gauthier S, Lopez OL, Cummings J, Xu Y, Feldman HH (2009) Effectiveness of donepezil in reducing clinical worsening in patients with mild-to-moderate Alzheimer’s disease. Dement Geriatr Cogn Disord 28(3):244–251

    Article  PubMed  CAS  Google Scholar 

  • Winblad B (2009) Donepezil in severe Alzheimer’s disease. Am J Alzheimers Dis Other Dement 24(3):185–192

    Article  Google Scholar 

  • Winblad B, Engedal K, Soininen H, Verhey F, Waldemar G, Wimo A, Wetterholm AL, Zhang R, Haglund A, Subbiah P, Donepezil Nordic Study Group (2001) A 1-year, randomized, placebo-controlled study of donepezil in patients with mild to moderate AD. Neurology 57(3):489–495

    Article  PubMed  CAS  Google Scholar 

  • Yoshiyama Y, Kojima A, Ishikawa C, Arai K (2010) Anti-inflammatory action of donepezil ameliorates tau pathology, synaptic loss, and neurodegeneration in a tauopathy mouse model. J Alzheimers Dis 22(1):295–306

    PubMed  CAS  Google Scholar 

  • Zhou J, Fu Y, Tang XC (2001) Huperzine A and donepezil protect rat pheochromocytoma cells against oxygen-glucose deprivation. Neurosci Neurosci Lett 306(1–2):53–56

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thank you to Cathy Kieras and Ivar McDonald.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Easton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Easton, A., Sankaranarayanan, S., Tanghe, A. et al. Effects of sub-chronic donepezil on brain Abeta and cognition in a mouse model of Alzheimer’s disease. Psychopharmacology 230, 279–289 (2013). https://doi.org/10.1007/s00213-013-3152-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3152-3

Keywords

Navigation