Abstract
Rationale
Acetylcholinesterase inhibitors (AChEIs) are approved to treat the symptoms of mild to moderate Alzheimer’s disease by restoring acetylcholine levels at synapses where the neurotransmitter has been depleted due to neurodegeneration. This assumption is challenged by more recent clinical studies suggesting the potential for disease-modifying effects of AChEIs as well as in vitro studies showing neuroprotective effects. However, few preclinical studies have assessed whether the improvement of cognitive symptoms may be mediated by reductions in Abeta or Tau pathology.
Objectives
The objective of the present study was to determine whether short-duration treatment with donepezil could improve spatial learning and memory in transgenic mice overexpressing mutant human amyloid precursor protein (hAPP) and presenilin 1 (PS1) (Dewachter et al., J Neurosci 20(17):6452–6458, 2000) after amyloid pathology has fully developed, consistent with early stages of Alzheimer’sdisease in humans. In parallel, the effect of donepezil treatment on brain amyloid, Tau, and glial endpoints was measured.
Results
This study showed a significant improvement in reference memory in hAPP/PS1 mice along with dose-dependent reductions in brain amyloid-β (Aβ).
Conclusion
These results suggest that the observed cognitive improvement produced by donepezil in Alzheimer’s disease may be due, at least in part, to reduction of brain Aβ.
Similar content being viewed by others
References
Akasofu S, Kosasa T, Kimura M, Kubota A (2003) Protective effect of donepezil in a primary culture of rat cortical neurons exposed to oxygen-glucose deprivation. Eur J Pharmacol 472(1–2):57–63
Ashe KH, Zahs KR (2010) Probing the biology of Alzheimer’s disease in mice. Neuron 66(5):631–645
Ballard CG, Chalmers KA, Tod C, McKeith IG, O’Brien JT, Wilock G, Love S, Perry EK (2007) Cholinesterase inhibitors reduce cortical Abeta in dementia with Lewy bodies. Neurology 68(20):1726–1179
Ballatore C, Lee VM, Trojanowski J (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8(9):663–672
Beach TG, Kuo YM, Spiegel K, Emmerling MR, Sue LI, Kokjohn K, Roher AE (2000) The cholinergic deficit coincides with Aβ deposition at the earliest histopathologic stages of Alzheimer disease. J Neuropathol Exp Neurol 59(4):308–313
Bejar C, Wang RH, Weinstock M (1999) Effect of rivastigmine on scopolamine-induced memory impairment in rats. Eur J Pharmacol 383(3):231–240
Bitan G, Fradinger EA, Spring SM, Teplow DB (2005) Neurotoxic protein oligomers—what you see is not always what you get. Amyloid 12(2):88–95
Bitner RS, Nikkel AL, Markosyan S, Otte S, Puttfarcken P, Gopalakrishnan M (2009) Selective alpha7 nicotinic acetylcholine receptor activation regulates glycogen synthase kinase3beta and decreases tau phosphorylation in vivo. Brain Res 1265:65–74
Bitner RS, Bunnelle WH, Decker MW, Drescher KU, Kohlhaas KL, Markosyan S, Marsh KC, Nikkel AL, Browman K, Radek R, Anderson DJ, Buccafusco J, Gopalakrishnan M (2010) In vivo pharmacological characterization of a novel selective alpha7 neuronal nicotinic acetylcholine receptor agonist ABT-107: preclinical considerations in Alzheimer’s disease. J Pharmacol Exp Ther 334(3):875–886
Black SE, Doody R, Li H, McRae T, Jambor KM, Xu Y, Sun Y, Perdomo CA, Richardson S (2007) Donepezil preserves cognition and global function in patients with severe Alzheimer disease. Neurology 69(5):459–469
Braida D, Paladini E, Griffini P, Lamperti M, Maggi A, Sala M (1996) An inverted U-shaped curve for heptylphysostigmine on radial maze performance in rats: comparison with other cholinesterase inhibitors. Eur J Pharmacol 302(1–3):13–20
Bruggink KA, Müller M, Kuiperij HB, Verbeek MM (2012) Methods for analysis of amyloid-β aggregates. J Alzheimers Dis 28(4):735–758
Buccafusco JJ (2009) The revival of scopolamine reversal for the assessment of cognition-enhancing drugs. In: Buccafusco JJ (ed) Methods of behavior analysis in neuroscience, 2nd edn. CRC, Boca Raton, Chapter 17
Burns A, Rossor M, Hecker J, Gauthier S, Petit H, Möller HJ, Rogers SL, Friedhoff LT (1999) The effects of donepezil in Alzheimer’s disease—results from a multinational trial. Dement Geriatr Cogn Disord 10(3):237–244
Caccamo A, Oddo S, Billings LM, Green KN, Martinez-Coria H, Fisher A, LaFerla FM (2006) M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron 49(5):671–682
Cummings JL, Back C (1998) The cholinergic hypothesis of neuropsychiatric symptoms in Alzheimer’s disease. Am J Geriatr Psychiatry 6(2 Suppl 1):S64–S78
Das UN (2007) Acetylcholinesterase and butyrylcholinesterase as possible markers of low-grade systemic inflammation. Med Sci Monit 13(12):RA214–RA221, Review
Davis AA, Fritz JJ, Wess J, Lah JJ, Levey AI (2010) Deletion of M1 muscarinic acetylcholine receptors increases amyloid pathology in vitro and in vivo. J Neurosci 30(12):4190–4196
Deng J, Shen C, Wang YJ, Zhang M, Li J, Xu ZQ, Gao CY, Fang CQ, Zhou HD (2010) Nicotine exacerbates tau phosphorylation and cognitive impairment induced by amyloid-beta 25–35 in rats. Eur J Pharmacol 637(1–3):83–88
Dewachter I, Van Dorpe J, Smeijers L, Gilis M, Kuipéri C, Laenen I, Caluwaerts N, Moechars D, Checler F, Vanderstichele H, Van Leuven F (2000) Aging increased amyloid peptide and caused amyloid plaques in brain of old APP/V717I transgenic mice by a different mechanism than mutant presenilin1. J Neurosci 20(17):6452–6458
Dong H, Csernansky CA, Martin MV, Bertchume A, Vallera D, Csernansky JG (2005) Acetylcholinesterase inhibitors ameliorate behavioral deficits in the Tg2576 mouse model of Alzheimer’s disease. Psychopharmacology (Berlin) 181(1):145–152
Dong H, Yuede CM, Coughlan CA, Murphy KM, Csernansky JG (2009) Effects of donepezil on amyloid-beta and synapse density in the Tg2576 mouse model of Alzheimer’s disease. Brain Res 1303:169–178
Feldman H, Gauthier S, Hecker J, Vellas B, Subbiah P, Whalen E, Donepezil MSAD Study Investigators Group (2001) A 24-week, randomized, double-blind study of donepezil in moderate to severe Alzheimer’s disease. Neurology 57(4):613–620
Feldman H, Gauthier S, Hecker J, Vellas B, Xu Y, Ieni JR, Schwam EM, Donepezil MSAD Study Investigators Group (2005) Efficacy and safety of donepezil in patients with more severe Alzheimer’s disease: a subgroup analysis from a randomized, placebo-controlled trial. Int J Geriatr Psychiatry 20(6):559–569
Fisher A (2012) Cholinergic modulation of amyloid precursor protein processing with emphasis on M1 muscarinic receptor: perspectives and challenges in treatment of Alzheimer’s disease. J Neurochem 120(Suppl 1):22–33
Gordon MN, Holcomb LA, Jantzen PT, DiCarlo G, Wilcock D, Boyett KW, Connor K, Melachrino J, O’Callaghan JP, Morgan D (2002) Time course of the development of Alzheimer-like pathology in the doubly transgenic PS1+APP mouse. Exp Neurol 173:183–195
Hashimoto M, Kazui H, Matsumoto K, Nakano Y, Yasuda M, Mori E (2005) Does donepezil treatment slow the progression of hippocampal atrophy in patients with Alzheimer’s disease? Am J Psychiatry 162(4):676–682
Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA (2003) Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 60(8):1119–1122
Heneka MT, Sastre M, Dumitrescu-Ozimek L, Dewachter I, Walter J, Klockgether T, Van Leuven F (2005) Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J Neuroinflammation 2(22)
Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, Wright K, Saad I, Mueller R, Morgan D, Sanders S, Zehr C, O’Campo K, Hardy J, Prada CM, Eckman C, Younkin S, Hsiao K, Duff K (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4:97–100
Hwang J, Hwang H, Lee HW, Suk K (2010) Microglia signaling as a target of donepezil. Neuropharmacology 58(7):1122–1129, Epub 2010 Feb 11
Jeon S, Bose S, Hur J, Jun K, Kim YK, Cho KS, Koo BS (2011) A modified formulation of Chinese traditional medicine improves memory impairment and reduces Aβ level in the Tg-APPswe/PS1dE9 mouse model of Alzheimer’s disease. J Ethnopharmacol 137(1):783–789
Krishnan KR, Charles HC, Doraiswamy PM, Mintzer J, Weisler R, Yu X, Perdomo C, Ieni JR, Rogers S (2003) Randomized, placebo-controlled trial of the effects of donepezil on neuronal markers and hippocampal volumes in Alzheimer’s disease. Am J Psychiatry 160(11):2003–2011
Lenz RA, Baker JD, Locke C, Rueter LE, Mohler EG, Wesnes K, Abi-Saab W, Saltarelli MD (2012) The scopolamine model as a pharmacodynamic marker in early drug development. Psychopharmacology (Berlin) 220(1):97–107
Lindner MD, Hogan JB, Hodges DB Jr, Orie AF, Chen P, Corsa JA, Leet JE, Gillman KW, Rose GM, Jones KM, Gribkoff VK (2006) Donepezil primarily attenuates scopolamine-induced deficits in psychomotor function, with moderate effects on simple conditioning and attention, and small effects on working memory and spatial mapping. Psychopharmacology (Berlin) 188(4):629–640
Lopez OL, Becker JT, Saxton J, Sweet RA, Klunk W, DeKosky ST (2005) Alteration of a clinically meaningful outcome in the natural history of Alzheimer’s disease by cholinesterase inhibition. J Am Geriatr Soc 53(1):83–87
Lu PH, Edland SD, Teng E, Tingus K, Petersen RC, Cummings JL, Alzheimer’s Disease Cooperative Study Group (2009) Donepezil delays progression to AD in MCI subjects with depressive symptoms. Neurology 72(24):2115–2121
Masuoka T, Kamei C (2009) The role of nicotinic receptors in the amelioration of cholinesterase inhibitors in scopolamine-induced memory deficits. Psychopharmacology (Berlin) 206(2):259–265
Medeiros R, Kitazawa M, Caccamo A, Baglietto-Vargas D, Estrada-Hernandez T, Cribbs DH, Fisher A, LaFerla FM (2011) Loss of muscarinic M1 receptor exacerbates Alzheimer’s disease-like pathology and cognitive decline. Am J Pathol 179(2):980–991
Moechars D, Dewachter I, Lorent K, Reversé D, Baekelandt V, Naidu A, Tesseur I, Spittaels K, Haute CV, Checler F, Godaux E, Cordell B, Van Leuven F (1999) Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem 274(10):6483–6492
Mohs RC, Doody RS, Morris JC, Ieni JR, Rogers SL, Perdomo CA, Pratt RD, “312” Study Group (2001) A 1-year, placebo-controlled preservation of function survival study of donepezil in AD patients. Neurology 57(3):481–488
Morris RG, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297(5868):681–683
Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of tau. Neuron 70(3):410–426
Mullan M (2000) Genetic contributions to causes of Alzheimer’s disease: current perspectives and future directions, pp 307–309. In: New insights into genetics and pathophysiology of Alzheimer’s disease: what are the clinical and therapeutic implications? J Clin Psychiatry 61(4):307–15
Nitsch RM, Deng M, Tennis M, Schoenfeld D, Growdon JH (2000) The selective muscarinic M1 agonist AF102B decreases levels of total Aβ in cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol 48(6):913–918
Noh MY, Koh SH, Kim Y, Kim HY, Cho GW, Kim SH (2009) Neuroprotective effects of donepezil through inhibition of GSK-3 activity in amyloid-beta-induced neuronal cell death. J Neurochem 108(5):1116–1125
Oddo S, Caccamo A, Green KN, Liang K, Tran L, Chen Y, Leslie FM, LaFerla FM (2005) Chronic nicotine administration exacerbates tau pathology in a transgenic model of Alzheimer’s disease. Proc Natl Acad Sci U S A 102(8):3046–3051
Raskind MA, Peskind ER, Wessel T, Yuan W (2000) Galantamine in AD: a 6-month randomized, placebo-controlled trial with a 6-month extension. The Galantamine USA-1 Study Group. Neurology 54(12):2261–2268
Rogers SL, Farlow MR, Doody RS, Mohs R, Friedhoff LT (1998) A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Donepezil Study Group. Neurology 50(1):136–145
Romberg C, Mattson MP, Mughal MR, Bussey TJ, Saksida LM (2011) Impaired attention in the 3xTgAD mouse model of Alzheimer’s disease: rescue by donepezil (Aricept). J Neurosci 31(9):3500–3507
Sabbagh MN, Walker DG, Reid RT, Stadnick T, Anand K, Lue LF (2008) Absence of effect of chronic nicotine administration on amyloid beta peptide levels in transgenic mice overexpressing mutated human APP (Sw, Ind). Neurosci Lett 448(2):217–220
Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192(1):106–113
Seltzer B (2005) Donepezil: a review. Expert Opin Drug Metab Toxicol 1(3):527–536, Review
Takada Y, Yonezawa A, Kume T, Katsuki H, Kaneko S, Sugimoto H, Akaike A (2003) Nicotinic acetylcholine receptor-mediated neuroprotection by donepezil against glutamate neurotoxicity in rat cortical neurons. J Pharmacol Exp Ther 306(2):772–777
Takata K, Kitamura Y, Saeki M, Terada M, Kagitani S, Kitamura R, Fujikawa Y, Maelicke A, Tomimoto H, Taniguchi T, Shimohama S (2010) Galantamine-induced amyloid-{beta} clearance mediated via stimulation of microglial nicotinic acetylcholine receptors. J Biol Chem 285(51):40180–40191
Terwel D, Muyllaert D, Dewachter I, Borghgraef P, Croes S, Devijver H, Van Leuven F (2008) Amyloid activates GSK-3beta to aggravate neuronal tauopathy in bigenic mice. Am J Pathol 172(3):786–798
Toyn JH, Lin XA, Thompson MW, Guss V, Meredith JE Jr, Sankaranarayanan S, Barrezueta N, Corradi J, Majumdar A, Small DL, Hansard M, Lanthorn T, Westphal RS, Albright CF (2010) Viable mouse gene ablations that robustly alter brain Aβ levels are rare. BMC Neurosci 11:143
Tsunekawa H, Noda Y, Mouri A, Yoneda F, Nabeshima T (2008) Synergistic effects of selegiline and donepezil on cognitive impairment induced by amyloid beta (25–35). Behav Brain Res 190(2):224–232
Tyagi E, Agrawal R, Nath C, Shukla R (2007) Effect of anti-dementia drugs on LPS induced neuroinflammation in mice. Life Sci 80(21):1977–1983
Van Dam D, Abramowski D, Staufenbiel M, De Deyn PP (2005) Symptomatic effect of donepezil, rivastigmine, galantamine and memantine on cognitive deficits in the APP23 model. Psychopharmacology (Berlin) 180(1):177–190
Van Dam D, Coen K, De Deyn PP (2008) Cognitive evaluation of disease-modifying efficacy of donepezil in the APP23 mouse model for Alzheimer’s disease. Psychopharmacology (Berlin) 197(1):37–43
Watanabe T, Iwasaki K, Ishikane S, Naitou T, Yoshimitsu Y, Yamagata N, Ozdemir MB, Takasaki K, Egashira N, Mishima K, Fujiwara M (2008) Spatial memory impairment without apoptosis induced by the combination of beta-amyloid oligomers and cerebral ischemia is related to decreased acetylcholine release in rats. J Pharmacol Sci 106(1):84–91
Watt AD, Perez KA, Rembach A, Sherrat NA, Hung LW, Johanssen T, McLean CA, Kok WM, Hutton CA, Fodero-Tavoletti M, Masters CL, Villemagne VL, Barnham KJ (2013) Oligomers, fact or artefact? SDS-PAGE induces dimerization of β-amyloid in human brain samples. Acta Neuropathol 125(4):549–564
Wilkinson D, Schindler R, Schwam E, Waldemar G, Jones RW, Gauthier S, Lopez OL, Cummings J, Xu Y, Feldman HH (2009) Effectiveness of donepezil in reducing clinical worsening in patients with mild-to-moderate Alzheimer’s disease. Dement Geriatr Cogn Disord 28(3):244–251
Winblad B (2009) Donepezil in severe Alzheimer’s disease. Am J Alzheimers Dis Other Dement 24(3):185–192
Winblad B, Engedal K, Soininen H, Verhey F, Waldemar G, Wimo A, Wetterholm AL, Zhang R, Haglund A, Subbiah P, Donepezil Nordic Study Group (2001) A 1-year, randomized, placebo-controlled study of donepezil in patients with mild to moderate AD. Neurology 57(3):489–495
Yoshiyama Y, Kojima A, Ishikawa C, Arai K (2010) Anti-inflammatory action of donepezil ameliorates tau pathology, synaptic loss, and neurodegeneration in a tauopathy mouse model. J Alzheimers Dis 22(1):295–306
Zhou J, Fu Y, Tang XC (2001) Huperzine A and donepezil protect rat pheochromocytoma cells against oxygen-glucose deprivation. Neurosci Neurosci Lett 306(1–2):53–56
Acknowledgements
Thank you to Cathy Kieras and Ivar McDonald.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Easton, A., Sankaranarayanan, S., Tanghe, A. et al. Effects of sub-chronic donepezil on brain Abeta and cognition in a mouse model of Alzheimer’s disease. Psychopharmacology 230, 279–289 (2013). https://doi.org/10.1007/s00213-013-3152-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00213-013-3152-3