Skip to main content

Advertisement

Log in

Chronic scopolamine-injection-induced cognitive deficit on reward-directed instrumental learning in rat is associated with CREB signaling activity in the cerebral cortex and dorsal hippocampus

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Scopolamine, a nonselective muscarinic receptor antagonist, has been used in experimental animal models of dementia. It has been demonstrated to disrupt performances in a battery of behavioral tests. However, no attempt has been made to determine how scopolamine-treated animals would respond to a series of reward-directed instrumental learning (RDIL) tasks.

Objectives

The present study was designed to investigate the effects of chronic intraperitoneal injection of scopolamine in Wistar rats on RDIL, as well as on the expression of memory-related molecules in the dorsal hippocampus (DH) and cerebral cortex (CCx).

Methods

The effects of the pretraining injection of scopolamine on the acquisition of instrumental response (experiment 1) were first investigated. Then, the effects of post-training manipulation on the maintenance of instrumental response and the responses to changes in contingency degradation and signal discrimination were assessed (experiment 2). Finally, the expression of cyclic AMP response element-binding protein (CREB), phosphorylated CREB, and brain-derived neurotrophic factor in the DH and CCx were examined using Western blotting and enzyme-linked immunosorbent assay.

Results

The acquisition of instrumental conditioning is more vulnerable than its maintenance. The 3.0-mg/kg dose of scopolamine rendered rats unable to make adaptive changes in facing contingency degradation and correct responses in signal discrimination tasks. Furthermore, CREB signaling was inactivated by pretraining scopolamine treatment in both the DH and CCx. Nevertheless, this pathway was selectively suppressed by post-training treatment only in the CCx during memory reconsolidation.

Conclusions

The results suggest that scopolamine-induced cognitive deficits on RDIL are related to the distinguishing alteration of CREB signaling in the DH and CCx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BDNF:

Brain-derived neurotrophic factor

CCx:

Cerebral cortex

CNS:

Central nervous system

CREB:

Cyclic AMP response element-binding protein

DH:

Dorsal hippocampus

FR:

Fixed ratio

p-CREB:

Phosphorylated CREB

RDIL:

Reward-directed instrumental learning

References

  • Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89:121–145

    Article  PubMed  CAS  Google Scholar 

  • Alonso M, Bekinschtein P, Cammarota M, Vianna MR, Izquierdo I, Medina JH (2005) Endogenous BDNF is required for long-term memory formation in the rat parietal cortex. Learn Mem 12:504–510

    Article  PubMed  Google Scholar 

  • Auld DS, Kornecook TJ, Bastianetto S, Quirion R (2002) Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 68:209–245

    Article  PubMed  CAS  Google Scholar 

  • Balderas I, Morin JP, Rodriguez-Ortiz CJ, Bermudez-Rattoni F (2012) Muscarinic receptors activity in the perirhinal cortex and hippocampus has differential involvement in the formation of recognition memory. Neurobiol Learn Mem 97:418–424

    Article  PubMed  CAS  Google Scholar 

  • Balleine BW (2005) Neural bases of food-seeking: affect, arousal and reward in corticostriatolimbic circuits. Physiol Behav 86:717–730

    Article  PubMed  CAS  Google Scholar 

  • Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37:407–419

    Article  PubMed  CAS  Google Scholar 

  • Bellistri E, Aguilar J, Brotons-Mas JR, Foffani G, de la Prida LM (2013) Basic properties of somatosensory-evoked responses in the dorsal hippocampus of the rat. J Physiol 591:2667–2686

    Google Scholar 

  • Benito E, Barco A (2010) CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci 33:230–240

    Article  PubMed  CAS  Google Scholar 

  • Besheer J, Short KR, Bevins RA (2001) Dopaminergic and cholinergic antagonism in a novel-object detection task with rats. Behav Brain Res 126:211–217

    Article  PubMed  CAS  Google Scholar 

  • Blake MG, Boccia MM, Krawczyk MC, Baratti CM (2011) Scopolamine prevents retrograde memory interference between two different learning tasks. Physiol Behav 102:332–337

    Article  PubMed  CAS  Google Scholar 

  • Boccia MM, Acosta GB, Blake MG, Baratti CM (2004) Memory consolidation and reconsolidation of an inhibitory avoidance response in mice: effects of i.c.v. injections of hemicholinium-3. Neuroscience 124:735–741

    Article  PubMed  CAS  Google Scholar 

  • Bontempi B, Laurent-Demir C, Destrade C, Jaffard R (1999) Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature 400:671–675

    Article  PubMed  CAS  Google Scholar 

  • Brembs B, Lorenzetti FD, Reyes FD, Baxter DA, Byrne JH (2002) Operant reward learning in aplysia: neuronal correlates and mechanisms. Science 296:1706–1709

    Article  PubMed  CAS  Google Scholar 

  • Broadbent NJ, Squire LR, Clark RE (2007) Rats depend on habit memory for discrimination learning and retention. Learn Mem 14:145–151

    Article  PubMed  Google Scholar 

  • Calandreau L, Trifilieff P, Mons N, Costes L, Marien M, Marighetto A, Micheau J, Jaffard R, Desmedt A (2006) Extracellular hippocampal acetylcholine level controls amygdala function and promotes adaptive conditioned emotional response. J Neurosci 26:13556–13566

    Article  PubMed  CAS  Google Scholar 

  • Chambers RA, Jones RM, Brown S, Taylor JR (2005) Natural reward-related learning in rats with neonatal ventral hippocampal lesions and prior cocaine exposure. Psychopharmacology (Berl) 179:470–478

    Article  CAS  Google Scholar 

  • Chintoh A, Fulton J, Koziel N, Aziz M, Sud M, Yeomans JS (2003) Role of cholinergic receptors in locomotion induced by scopolamine and oxotremorine-M. Pharmacol Biochem Behav 76:53–61

    Article  PubMed  CAS  Google Scholar 

  • Compton DM (2004) Behavior strategy learning in rat: effects of lesions of the dorsal striatum or dorsal hippocampus. Behav Processes 67:335–342

    PubMed  Google Scholar 

  • Conn PJ, Jones CK, Lindsley CW (2009) Subtype-selective allosteric modulators of muscarinic receptors for the treatment of CNS disorders. Trends Pharmacol Sci 30:148–155

    Article  PubMed  CAS  Google Scholar 

  • Countryman RA, Orlowski JD, Brightwell JJ, Oskowitz AZ, Colombo PJ (2005) CREB phosphorylation and c-Fos expression in the hippocampus of rats during acquisition and recall of a socially transmitted food preference. Hippocampus 15:56–67

    Article  PubMed  CAS  Google Scholar 

  • D’Aquila PS (2010) Dopamine on D2-like receptors “reboosts” dopamine D1-like receptor-mediated behavioural activation in rats licking for sucrose. Neuropharmacology 58:1085–1096

    Article  PubMed  Google Scholar 

  • Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118(Pt 1):279–306

    Article  PubMed  Google Scholar 

  • Dickinson A, Balleine B (1993) Actions and responses: the dual psychology of behaviour. In: Eilan N, McCarthy RA (eds) Spatial representation: problems in philosophy and psychology. Blackwell, Malden, pp 277–293

    Google Scholar 

  • Dickinson A, Nicholas DJ, Adams CD (1983) The effect of the instrumental training contingency on susceptibility to reinforcer devaluation. J Exp Psychology 35:35–51

    Google Scholar 

  • Dillon GM, Shelton D, McKinney AP, Caniga M, Marcus JN, Ferguson MT, Kornecook TJ, Dodart JC (2009) Prefrontal cortex lesions and scopolamine impair attention performance of C57BL/6 mice in a novel 2-choice visual discrimination task. Behav Brain Res 204:67–76

    Article  PubMed  CAS  Google Scholar 

  • Dudai Y (2012) The restless engram: consolidations never end. Annu Rev Neurosci 35:227–247

    Article  PubMed  CAS  Google Scholar 

  • Ebert U, Kirch W (1998) Scopolamine model of dementia: electroencephalogram findings and cognitive performance. Eur J Clin Invest 28:944–949

    Article  PubMed  CAS  Google Scholar 

  • Granon S, Hardouin J, Courtier A, Poucet B (1998) Evidence for the involvement of the rat prefrontal cortex in sustained attention. Q J Exp Psychol B 51:219–233

    PubMed  CAS  Google Scholar 

  • Han JH, Kushner SA, Yiu AP, Cole CJ, Matynia A, Brown RA, Neve RL, Guzowski JF, Silva AJ, Josselyn SA (2007) Neuronal competition and selection during memory formation. Science 316:457–460

    Article  PubMed  CAS  Google Scholar 

  • Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16:710–715

    Article  PubMed  CAS  Google Scholar 

  • Hasselmo ME, Sarter M (2011) Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36:52–73

    Article  PubMed  CAS  Google Scholar 

  • Hasselmo ME, Stern CE (2006) Mechanisms underlying working memory for novel information. Trends Cogn Sci 10:487–493

    Article  PubMed  Google Scholar 

  • Herrera-Morales W, Mar I, Serrano B, Bermudez-Rattoni F (2007) Activation of hippocampal postsynaptic muscarinic receptors is involved in long-term spatial memory formation. Eur J Neurosci 25:1581–1588

    Article  PubMed  Google Scholar 

  • Higgs S, Deacon RM, Rawlins JN (2000) Effects of scopolamine on a novel choice serial reaction time task. Eur J Neurosci 12:1781–1788

    Article  PubMed  CAS  Google Scholar 

  • Hodges DB Jr, Lindner MD, Hogan JB, Jones KM, Markus EJ (2009) Scopolamine induced deficits in a battery of rat cognitive tests: comparisons of sensitivity and specificity. Behav Pharmacol 20:237–251

    Article  PubMed  CAS  Google Scholar 

  • Hoffman KL, McNaughton BL (2002) Coordinated reactivation of distributed memory traces in primate neocortex. Science 297:2070–2073

    Article  PubMed  CAS  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  PubMed  CAS  Google Scholar 

  • Kendall I, Slotten HA, Codony X, Burgueno J, Pauwels PJ, Vela JM, Fone KC (2011) E-6801, a 5-HT6 receptor agonist, improves recognition memory by combined modulation of cholinergic and glutamatergic neurotransmission in the rat. Psychopharmacology (Berl) 213:413–430

    Article  CAS  Google Scholar 

  • Kennedy PJ, Shapiro ML (2004) Retrieving memories via internal context requires the hippocampus. J Neurosci 24:6979–6985

    Article  PubMed  CAS  Google Scholar 

  • Klinkenberg I, Blokland A (2010) The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev 34:1307–1350

    Article  PubMed  CAS  Google Scholar 

  • Knox LT, Jing Y, Fleete MS, Collie ND, Zhang H, Liu P (2011) Scopolamine impairs behavioural function and arginine metabolism in the rat dentate gyrus. Neuropharmacology 61:1452–1462

    Article  PubMed  CAS  Google Scholar 

  • Lansink CS, Goltstein PM, Lankelma JV, McNaughton BL, Pennartz CM (2009) Hippocampus leads ventral striatum in replay of place-reward information. PLoS Biol 7:e1000173

    Article  PubMed  Google Scholar 

  • Leblond L, Beaufort C, Delerue F, Durkin TP (2002) Differential roles for nicotinic and muscarinic cholinergic receptors in sustained visuo-spatial attention? A study using a 5-arm maze protocol in mice. Behav Brain Res 128:91–102

    Article  PubMed  CAS  Google Scholar 

  • Lee I, Kesner RP (2003) Time-dependent relationship between the dorsal hippocampus and the prefrontal cortex in spatial memory. J Neurosci 23:1517–1523

    PubMed  CAS  Google Scholar 

  • Lee YS, Silva AJ (2009) The molecular and cellular biology of enhanced cognition. Nat Rev Neurosci 10:126–140

    Article  PubMed  CAS  Google Scholar 

  • Luo AH, Tahsili-Fahadan P, Wise RA, Lupica CR, Aston-Jones G (2011) Linking context with reward: a functional circuit from hippocampal CA3 to ventral tegmental area. Science 333:353–357

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711

    Article  PubMed  CAS  Google Scholar 

  • Masuoka T, Fujii Y, Kamei C (2006) Effect of scopolamine on the hippocampal theta rhythm during an eight-arm radial maze task in rats. Eur J Pharmacol 539:76–80

    Article  PubMed  CAS  Google Scholar 

  • Mazur JE, Biondi DR (2011) Effects of time between trials on rats’ and pigeons’ choices with probabilistic delayed reinforcers. J Exp Anal Behav 95:41–56

    Article  PubMed  Google Scholar 

  • McGaugh JL (2000) Memory—a century of consolidation. Science 287:248–251

    Article  PubMed  CAS  Google Scholar 

  • McQuail JA, Burk JA (2006) Evaluation of muscarinic and nicotinic receptor antagonists on attention and working memory. Pharmacol Biochem Behav 85:796–803

    Article  PubMed  CAS  Google Scholar 

  • Niv Y, Joel D, Dayan P (2006) A normative perspective on motivation. Trends Cogn Sci 10:375–381

    Article  PubMed  Google Scholar 

  • Nyakas C, Granic I, Halmy LG, Banerjee P, Luiten PG (2011) The basal forebrain cholinergic system in aging and dementia. Rescuing cholinergic neurons from neurotoxic amyloid-β42 with memantine. Behav Brain Res 221:594–603

    Article  PubMed  CAS  Google Scholar 

  • Ohno M, Watanabe S (1996) Interactive processing between glutamatergic and cholinergic systems involved in inhibitory avoidance learning of rats. Eur J Pharmacol 312:145–147

    Article  PubMed  CAS  Google Scholar 

  • Osada T, Adachi Y, Kimura HM, Miyashita Y (2008) Towards understanding of the cortical network underlying associative memory. Philos Trans R Soc Lond B Biol Sci 363:2187–2199

    Article  PubMed  Google Scholar 

  • Pakpour B, Ahmadi S, Nayer-Nouri T, Oryan S, Zarrindast MR (2010) Inhibitory avoidance memory deficit induced by scopolamine: interaction with glutamatergic system in the nucleus accumbens. Behav Pharmacol 21:719–726

    Google Scholar 

  • Phillips JM, McAlonan K, Robb WG, Brown VJ (2000) Cholinergic neurotransmission influences covert orientation of visuospatial attention in the rat. Psychopharmacology (Berl) 150:112–116

    Article  CAS  Google Scholar 

  • Porte Y, Trifilieff P, Wolff M, Micheau J, Buhot MC, Mons N (2011) Extinction of spatial memory alters CREB phosphorylation in hippocampal CA1. Hippocampus 21:1169–1179

    Article  PubMed  CAS  Google Scholar 

  • Rapanelli M, Frick LR, Zanutto BS (2009) Differential gene expression in the rat hippocampus during learning of an operant conditioning task. Neuroscience 163:1031–1038

    Article  PubMed  CAS  Google Scholar 

  • Restivo L, Tafi E, Ammassari-Teule M, Marie H (2009) Viral-mediated expression of a constitutively active form of CREB in hippocampal neurons increases memory. Hippocampus 19:228–234

    Article  PubMed  CAS  Google Scholar 

  • Roldan G, Bolanos-Badillo E, Gonzalez-Sanchez H, Quirarte GL, Prado-Alcala RA (1997) Selective M1 muscarinic receptor antagonists disrupt memory consolidation of inhibitory avoidance in rats. Neurosci Lett 230:93–96

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K, Karelina K, Obrietan K (2011) CREB: a multifaceted regulator of neuronal plasticity and protection. J Neurochem 116:1–9

    Article  PubMed  CAS  Google Scholar 

  • Sara SJ (2000) Retrieval and reconsolidation: toward a neurobiology of remembering. Learn Mem 7:73–84

    Article  PubMed  CAS  Google Scholar 

  • Sarter M, Bruno JP, Givens B (2003) Attentional functions of cortical cholinergic inputs: what does it mean for learning and memory? Neurobiol Learn Mem 80:245–256

    Article  PubMed  CAS  Google Scholar 

  • Sarter M, Hasselmo ME, Bruno JP, Givens B (2005) Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Brain Res Rev 48:98–111

    Article  PubMed  CAS  Google Scholar 

  • Saura CA, Valero J (2011) The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Rev Neurosci 22:153–169

    PubMed  CAS  Google Scholar 

  • Scott Bitner R (2012) Cyclic AMP response element-binding protein (CREB) phosphorylation: a mechanistic marker in the development of memory enhancing Alzheimer’s disease therapeutics. Biochem Pharmacol 83:705–714

    Article  PubMed  CAS  Google Scholar 

  • Shannon HE, Eberle EL (2006) Effects of biasing the location of stimulus presentation, and the muscarinic cholinergic receptor antagonist scopolamine, on performance of a 5-choice serial reaction time attention task in rats. Behav Pharmacol 17:71–85

    Article  PubMed  CAS  Google Scholar 

  • Shi Z, Sun X, Liu X, Chen S, Chang Q, Chen L, Song G, Li H (2012) Evaluation of an Aβ(1–40)-induced cognitive deficit in rat using a reward-directed instrumental learning task. Behav Brain Res 234:323–333

    Article  PubMed  CAS  Google Scholar 

  • Sindreu CB, Scheiner ZS, Storm DR (2007) Ca2+-stimulated adenylyl cyclases regulate ERK-dependent activation of MSK1 during fear conditioning. Neuron 53:79–89

    Article  PubMed  CAS  Google Scholar 

  • Taylor TG, Galuska CM, Banna K, Yahyavi-Firouz-abadi N, See RE (2010) Response acquisition and fixed-ratio escalation based on interresponse times in rats. J Exp Anal Behav 93:261–267

    Article  PubMed  Google Scholar 

  • Tse D, Langston RF, Kakeyama M, Bethus I, Spooner PA, Wood ER, Witter MP, Morris RG (2007) Schemas and memory consolidation. Science 316:76–82

    Article  PubMed  CAS  Google Scholar 

  • von Linstow RE, Harbaran D, Micheau J, Platt B, Riedel G (2007) Dissociation of cholinergic function in spatial and procedural learning in rats. Neuroscience 146:875–889

    Article  Google Scholar 

  • Wallenstein GV, Vago DR (2001) Intrahippocampal scopolamine impairs both acquisition and consolidation of contextual fear conditioning. Neurobiol Learn Mem 75:245–252

    Article  PubMed  CAS  Google Scholar 

  • Wang A, Bibb JA (2011) Is CREB the angry bird that releases memory in Alzheimer’s? Neuropsychopharmacology 36:2153–2154

    Article  PubMed  CAS  Google Scholar 

  • Wang SH, Morris RG (2010) Hippocampal–neocortical interactions in memory formation, consolidation, and reconsolidation. Annu Rev Psychol 61:49–79, C1–C4

    Article  PubMed  Google Scholar 

  • Warburton EC, Glover CP, Massey PV, Wan H, Johnson B, Bienemann A, Deuschle U, Kew JN, Aggleton JP, Bashir ZI, Uney J, Brown MW (2005) cAMP responsive element-binding protein phosphorylation is necessary for perirhinal long-term potentiation and recognition memory. J Neurosci 25:6296–6303

    Article  PubMed  CAS  Google Scholar 

  • Wess J, Eglen RM, Gautam D (2007) Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 6:721–733

    Article  PubMed  CAS  Google Scholar 

  • West EA, Forcelli PA, Murnen A, Gale K, Malkova L (2011) A visual, position-independent instrumental reinforcer devaluation task for rats. J Neurosci Methods 194:297–304

    Article  PubMed  Google Scholar 

  • Yefet K, Merhav M, Kuulmann-Vander S, Elkobi A, Belelovsky K, Jacobson-Pick S, Meiri N, Rosenblum K (2006) Different signal transduction cascades are activated simultaneously in the rat insular cortex and hippocampus following novel taste learning. Eur J Neurosci 24:1434–1442

    Article  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464–476

    Article  PubMed  CAS  Google Scholar 

  • Yousefi B, Nasehi M, Khakpai F, Zarrindast MR (2012) Possible interaction of cholinergic and GABAergic systems between MS and CA1 upon memory acquisition in rats. Behav Brain Res 235:231–243

    Article  PubMed  CAS  Google Scholar 

  • Zhang GR, Zhao H, Choi EM, Svestka M, Wang X, Cook RG, Geller AI (2012) CaMKII, MAPK, and CREB are coactivated in identified neurons in a neocortical circuit required for performing visual shape discriminations. Hippocampus 22:2276–2289

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30973888) and the Ministry of Science and Technology of China (2011DFA32730 and 2012-ZX09J12201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinmin Liu.

Additional information

Z. Shi and L. Chen, joint co-authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Z., Chen, L., Li, S. et al. Chronic scopolamine-injection-induced cognitive deficit on reward-directed instrumental learning in rat is associated with CREB signaling activity in the cerebral cortex and dorsal hippocampus. Psychopharmacology 230, 245–260 (2013). https://doi.org/10.1007/s00213-013-3149-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3149-y

Keywords

Navigation