, Volume 230, Issue 1, pp 57–67 | Cite as

Time-dependent effects of haloperidol on glutamine and GABA homeostasis and astrocyte activity in the rat brain

  • Glenn T. Konopaske
  • Nicolas R. Bolo
  • Alo C. Basu
  • Perry F. Renshaw
  • Joseph T. Coyle
Original Investigation



Schizophrenia is a severe, persistent, and fairly common mental illness. Haloperidol is widely used and is effective against the symptoms of psychosis seen in schizophrenia. Chronic oral haloperidol administration decreased the number of astrocytes in the parietal cortex of macaque monkeys (Konopaske et al., Biol Psych 63:759–765, 2008). Since astrocytes play a key role in glutamate metabolism, chronic haloperidol administration was hypothesized to modulate astrocyte metabolic function and glutamate homeostasis.


This study investigated the effects of chronic haloperidol administration on astrocyte metabolic activity and glutamate, glutamine, and GABA homeostasis.


We used ex vivo 13C magnetic resonance spectroscopy along with high-performance liquid chromatography after [1-13C]glucose and [1,2-13C]acetate administration to analyze forebrain tissue from rats administered oral haloperidol for 1 or 6 months.


Administration of haloperidol for 1 month produced no changes in 13C labeling of glutamate, glutamine, or GABA, or in their total levels. However, a 6-month haloperidol administration increased 13C labeling of glutamine by [1,2-13C]acetate. Moreover, total GABA levels were also increased. Haloperidol administration also increased the acetate/glucose utilization ratio for glutamine in the 6-month cohort.


Chronic haloperidol administration in rats appears to increase forebrain GABA production along with astrocyte metabolic activity. Studies exploring these processes in subjects with schizophrenia should take into account the potential confounding effects of antipsychotic medication treatment.


13C magnetic resonance spectroscopy Brain Haloperidol High-performance liquid chromatography Rat Astrocyte Neuron Glutamate Glutamine GABA 


  1. Abi-Saab WM, Bubser M, Roth RH, Deutch AY (1999) 5-HT2 receptor regulation of extracellular GABA levels in the prefrontal cortex. Neuropsychopharmacology 20:92–96PubMedCrossRefGoogle Scholar
  2. Bal A, Bachelot T, Savasta M, Manier M, Verna JM, Benabid AL, Feuerstein C (1994) Evidence for dopamine D2 receptor mRNA expression by striatal astrocytes in culture: in situ hybridization and polymerase chain reaction studies. Brain Res Mol Brain Res 23:204–212PubMedCrossRefGoogle Scholar
  3. Basson BR, Kinon BJ, Taylor CC, Szymanski KA, Gilmore JA, Tollefson GD (2001) Factors influencing acute weight change in patients with schizophrenia treated with olanzapine, haloperidol, or risperidone. J Clin Psychiatry 62:231–238PubMedCrossRefGoogle Scholar
  4. Bernstein EM, Quick MW (1999) Regulation of gamma-aminobutyric acid (GABA) transporters by extracellular GABA. J Biol Chem 274:889–895PubMedCrossRefGoogle Scholar
  5. Bourdelais AJ, Deutch AY (1994) The effects of haloperidol and clozapine on extracellular GABA levels in the prefrontal cortex of the rat: an in vivo microdialysis study. Cereb Cortex 4:69–77PubMedCrossRefGoogle Scholar
  6. Bustillo J, Barrow R, Paz R, Tang J, Seraji-Bozorgzad N, Moore GJ, Bolognani F, Lauriello J, Perrone-Bizzozero N, Galloway MP (2005) Long-term treatment of rats with haloperidol: lack of an effect on brain N-acetyl aspartate levels. Neuropsychopharmacology 31:751–756CrossRefGoogle Scholar
  7. Bymaster FP, Calligaro DO, Falcone JF, Marsh RD, Moore NA, Tye NC, Seeman P, Wong DT (1996) Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 14:87–96PubMedCrossRefGoogle Scholar
  8. Cahn W, Hulshoff Pol HE, Lems EB, van Haren NE, Schnack HG, van der Linden JA, Schothorst PF, van Engeland H, Kahn RS (2002) Brain volume changes in first-episode schizophrenia: a 1-year follow-up study. Arch Gen Psychiatry 59:1002–1010PubMedCrossRefGoogle Scholar
  9. Cerdan S, Künnecke B, Seelig J (1990) Cerebral metabolism of [1,2-13C2]acetate as detected by in vivo and in vitro 13C NMR. J Biol Chem 265:12916–12926PubMedGoogle Scholar
  10. Cozzi NV, Nichols DE (1996) 5-HT2A receptor antagonists inhibit potassium-stimulated gamma-aminobutyric acid release in rat frontal cortex. Eur J Pharmacol 309:25–31PubMedCrossRefGoogle Scholar
  11. Delle Donne KT, Sesack SR, Pickel VM (1997) Ultrastructural immunocytochemical localization of the dopamine D2 receptor within GABAergic neurons of the rat striatum. Brain Res 746:239–255PubMedCrossRefGoogle Scholar
  12. Dorph-Petersen KA, Pierri JN, Perel JM, Sun Z, Sampson AR, Lewis DA (2005) The influence of chronic exposure to antipsychotic medications on brain size before and after tissue fixation: a comparison of haloperidol and olanzapine in macaque monkeys. Neuropsychopharmacology 30:1649–1661PubMedCrossRefGoogle Scholar
  13. Eastwood SL, Heffernan J, Harrison PJ (1997) Chronic haloperidol treatment differentially affects the expression of synaptic and neuronal plasticity-associated genes. Mol Psychiatr 2:322–329CrossRefGoogle Scholar
  14. Eloqayli H, Dahl CB, Gotestam KG, Unsgard G, Hadidi H, Sonnewald U (2003) Pentylenetetrazole decreases metabolic glutamate turnover in rat brain. J Neurochem 85:1200–1207PubMedCrossRefGoogle Scholar
  15. Gao XM, Hashimoto T, Cooper TB, Tamminga CA (1997) The dose-response characteristics of rat oral dyskinesias with chronic haloperidol or clozapine administration. J Neural Transm 104:97–104PubMedCrossRefGoogle Scholar
  16. Girault JA (2012) Integrating neurotransmission in striatal medium spiny neurons. Adv Exp Med Biol 970:407–429PubMedCrossRefGoogle Scholar
  17. Grimm JW, See RE (2000) Chronic haloperidol-induced alterations in pallidal GABA and striatal D(1)-mediated dopamine turnover as measured by dual probe microdialysis in rats. Neuroscience 100:507–514PubMedCrossRefGoogle Scholar
  18. Harsing LG Jr, Zigmond MJ (1997) Influence of dopamine on GABA release in striatum: evidence for D1–D2 interactions and non-synaptic influences. Neuroscience 77:419–429PubMedCrossRefGoogle Scholar
  19. Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27:735–743PubMedCrossRefGoogle Scholar
  20. Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249PubMedCrossRefGoogle Scholar
  21. Hess EJ, Norman AB, Creese I (1988) Chronic treatment with dopamine receptor antagonists: behavioral and pharmacologic effects on D1 and D2 dopamine receptors. J Neurosci 8:2361–2370PubMedGoogle Scholar
  22. Ho BC, Andreasen NC, Ziebell S, Pierson R, Magnotta V (2011) Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry 68:128–137PubMedCrossRefGoogle Scholar
  23. Honea R, Crow TJ, Passingham D, Mackay CE (2005) Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 162:2233–2245PubMedCrossRefGoogle Scholar
  24. Jablensky A (1997) The 100-year epidemiology of schizophrenia. Schizophr Res 28:111–125PubMedCrossRefGoogle Scholar
  25. Kasper S, Lerman MN, McQuade RD, Saha A, Carson WH, Ali M, Archibald D, Ingenito G, Marcus R, Pigott T (2003) Efficacy and safety of aripiprazole vs. haloperidol for long-term maintenance treatment following acute relapse of schizophrenia. Int J Neuropsychopharmacol 6:325–337PubMedCrossRefGoogle Scholar
  26. Khan ZU, Koulen P, Rubinstein M, Grandy DK, Goldman-Rakic PS (2001) An astroglia-linked dopamine D2-receptor action in prefrontal cortex. Proc Natl Acad Sci U S A 98:1964–1969PubMedCrossRefGoogle Scholar
  27. Kim KS, Yoon YR, Lee HJ, Yoon S, Kim SY, Shin SW, An JJ, Kim MS, Choi SY, Sun W, Baik JH (2010) Enhanced hypothalamic leptin signaling in mice lacking dopamine D2 receptors. J Biol Chem 285:8905–8917PubMedCrossRefGoogle Scholar
  28. Kondziella D, Brenner E, Eyjolfsson EM, Markinhuhta KR, Carlsson ML, Sonnewald U (2006) Glial–neuronal interactions are impaired in the schizophrenia model of repeated MK801 exposure. Neuropsychopharmacology 31:1880–1887PubMedCrossRefGoogle Scholar
  29. Konopaske GT, Dorph-Petersen KA, Sweet RA, Pierri JN, Zhang W, Sampson AR, Lewis DA (2008) Effect of chronic antipsychotic exposure on astrocyte and oligodendrocyte numbers in macaque monkeys. Biol Psychiatry 63:759–765PubMedCrossRefGoogle Scholar
  30. Kuroki T, Meltzer HY, Ichikawa J (1999) Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens. J Pharmacol Exp Ther 288:774–781PubMedGoogle Scholar
  31. Le Moine C, Gaspar P (1998) Subpopulations of cortical GABAergic interneurons differ by their expression of D1 and D2 dopamine receptor subtypes. Brain Res Mol Brain Res 58:231–236PubMedCrossRefGoogle Scholar
  32. Lieberman JA, Tollefson GD, Charles C, Zipursky R, Sharma T, Kahn RS, Keefe RS, Green AI, Gur RE, McEvoy J, Perkins D, Hamer RM, Gu H, Tohen M (2005) Antipsychotic drug effects on brain morphology in first-episode psychosis. Arch Gen Psychiatry 62:361–370PubMedCrossRefGoogle Scholar
  33. Liegeois JF, Ichikawa J, Meltzer HY (2002) 5-HT(2A) receptor antagonism potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and inhibits that in the nucleus accumbens in a dose-dependent manner. Brain Res 947:157–165PubMedCrossRefGoogle Scholar
  34. Lindefors N, Brene S, Herrera-Marschitz M, Persson H (1989a) Region specific regulation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain. Exp Brain Res 77:611–620PubMedCrossRefGoogle Scholar
  35. Lindefors N, Brodin E, Tossman U, Segovia J, Ungerstedt U (1989b) Tissue levels and in vivo release of tachykinins and GABA in striatum and substantia nigra of rat brain after unilateral striatal dopamine denervation. Exp Brain Res 74:527–534PubMedCrossRefGoogle Scholar
  36. Lipska BK, Lerman DN, Khaing ZZ, Weickert CS, Weinberger DR (2003) Gene expression in dopamine and GABA systems in an animal model of schizophrenia: effects of antipsychotic drugs. Eur J Neurosci 18:391–402PubMedCrossRefGoogle Scholar
  37. Mathalon DH, Sullivan EV, Lim KO, Pfefferbaum A (2001) Progressive brain volume changes and the clinical course of schizophrenia in men: a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry 58:148–157PubMedCrossRefGoogle Scholar
  38. McKenna MC (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85:3347–3358PubMedCrossRefGoogle Scholar
  39. Melø TM, Nehlig A, Sonnewald U (2006) Neuronal–glial interactions in rats fed a ketogenic diet. Neurochem Int 48:498–507PubMedCrossRefGoogle Scholar
  40. Minet-Ringuet J, Even PC, Guesdon B, Tome D, de Beaurepaire R (2005) Effects of chronic neuroleptic treatments on nutrient selection, body weight, and body composition in the male rat under dietary self-selection. Behav Brain Res 163:204–211PubMedCrossRefGoogle Scholar
  41. Momiyama T, Koga E (2001) Dopamine D(2)-like receptors selectively block N-type Ca(2+) channels to reduce GABA release onto rat striatal cholinergic interneurones. J Physiol 533:479–492PubMedCrossRefGoogle Scholar
  42. Muly EC 3rd, Szigeti K, Goldman-Rakic PS (1998) D1 receptor in interneurons of macaque prefrontal cortex: distribution and subcellular localization. J Neurosci 18:10553–10565PubMedGoogle Scholar
  43. Nagy JI, Vincent SR, Fibiger HC (1978) Altered neurotransmitter synthetic enzyme activity in some extrapyramidal nuclei after lesions of the nigro-striatal dopamine projection. Life Sci 22:1777–1782PubMedCrossRefGoogle Scholar
  44. Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161:303–310PubMedCrossRefGoogle Scholar
  45. Ongur D, Prescot AP, McCarthy J, Cohen BM, Renshaw PF (2010) Elevated gamma-aminobutyric acid levels in chronic schizophrenia. Biol Psychiatry 68:667–670PubMedCrossRefGoogle Scholar
  46. Osborne PG, O’Connor WT, Beck O, Ungerstedt U (1994) Acute versus chronic haloperidol: relationship between tolerance to catalepsy and striatal and accumbens dopamine, GABA and acetylcholine release. Brain Res 634:20–30PubMedCrossRefGoogle Scholar
  47. Requardt RP, Wilhelm F, Rillich J, Winkler U, Hirrlinger J (2010) The biphasic NAD(P)H fluorescence response of astrocytes to dopamine reflects the metabolic actions of oxidative phosphorylation and glycolysis. J Neurochem 115:483–492PubMedCrossRefGoogle Scholar
  48. Requardt RP, Hirrlinger PG, Wilhelm F, Winkler U, Besser S, Hirrlinger J (2012) Ca(2)(+) signals of astrocytes are modulated by the NAD(+)/NADH redox state. J Neurochem 120:1014–1025PubMedGoogle Scholar
  49. Richelson E, Souder T (2000) Binding of antipsychotic drugs to human brain receptors focus on newer generation compounds. Life Sci 68:29–39PubMedCrossRefGoogle Scholar
  50. Schousboe A, Sarup A, Bak LK, Waagepetersen HS, Larsson OM (2004) Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission. Neurochem Int 45:521–527PubMedCrossRefGoogle Scholar
  51. Seamans JK, Gorelova N, Durstewitz D, Yang CR (2001) Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci 21:3628–3638PubMedGoogle Scholar
  52. See RE, Chapman MA (1994) Chronic haloperidol, but not clozapine, produces altered oral movements and increased extracellular glutamate in rats. Eur J Pharmacol 263:269–276PubMedCrossRefGoogle Scholar
  53. See RE, Lynch AM (1995) Chronic haloperidol potentiates stimulated glutamate release in caudate putamen, but not prefrontal cortex. Neuroreport 6:1795–1798PubMedCrossRefGoogle Scholar
  54. Shirakawa O, Tamminga CA (1994) Basal ganglia GABAA and dopamine D1 binding site correlates of haloperidol-induced oral dyskinesias in rat. Exp Neurol 127:62–69PubMedCrossRefGoogle Scholar
  55. Sonnewald U, Kondziella D (2003) Neuronal glial interaction in different neurological diseases studied by ex vivo 13C NMR spectroscopy. NMR Biomed 16:424–429PubMedCrossRefGoogle Scholar
  56. Steulet AF, Bernasconi R, Leonhardt T, Martin P, Grunenwald C, Bischoff S, Heinrich M, Bandelier V, Maitre L (1990) Effects of selective dopamine D1 and D2 receptor agonists on the rate of GABA synthesis in mouse brain. Eur J Pharmacol 191:19–27PubMedCrossRefGoogle Scholar
  57. Storey JD (2002) A direct approach to false discovery rates. J Roy Statist Soc Ser B 64:479–498CrossRefGoogle Scholar
  58. Theberge J, Bartha R, Drost DJ, Menon RS, Malla A, Takhar J, Neufeld RW, Rogers J, Pavlosky W, Schaefer B, Densmore M, Al-Semaan Y, Williamson PC (2002) Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers. Am J Psychiatry 159:1944–1946PubMedCrossRefGoogle Scholar
  59. Theberge J, Al-Semaan Y, Williamson PC, Menon RS, Neufeld RW, Rajakumar N, Schaefer B, Densmore M, Drost DJ (2003) Glutamate and glutamine in the anterior cingulate and thalamus of medicated patients with chronic schizophrenia and healthy comparison subjects measured with 4.0-T proton MRS. Am J Psychiatry 160:2231–2233PubMedCrossRefGoogle Scholar
  60. Trantham-Davidson H, Neely LC, Lavin A, Seamans JK (2004) Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex. J Neurosci 24:10652–10659PubMedCrossRefGoogle Scholar
  61. Vermeulen RJ, Jongenelen CA, Langeveld CH, Wolters EC, Stoof JC, Drukarch B (1994) Dopamine D1 receptor agonists display a different intrinsic activity in rat, monkey and human astrocytes. Eur J Pharmacol 269:121–125PubMedCrossRefGoogle Scholar
  62. Vincent SL, Adamec E, Sorensen I, Benes FM (1994) The effects of chronic haloperidol administration on GABA-immunoreactive axon terminals in rat medial prefrontal cortex. Synapse 17:26–35PubMedCrossRefGoogle Scholar
  63. von Wilmsdorff M, Bouvier ML, Henning U, Schmitt A, Gaebel W (2010) The impact of antipsychotic drugs on food intake and body weight and on leptin levels in blood and hypothalamic ob-r leptin receptor expression in wistar rats. Clinics (Sao Paulo) 65:885–894CrossRefGoogle Scholar
  64. Waddington JL, Gamble SJ (1980) Neuroleptic treatment for a substantial proportion of adult life: behavioural sequelae of 9 months haloperidol administration. Eur J Pharmacol 67:363–369PubMedCrossRefGoogle Scholar
  65. Waniewski RA, Martin DL (1998) Preferential utilization of acetate by astrocytes is attributable to transport. J Neurosci 18:5225–5233PubMedGoogle Scholar
  66. Waniewski RA, Martin DL (2004) Astrocytes and synaptosomes transport and metabolize lactate and acetate differently. Neurochem Res 29:209–217PubMedCrossRefGoogle Scholar
  67. Yamamoto BK, Cooperman MA (1994) Differential effects of chronic antipsychotic drug treatment on extracellular glutamate and dopamine concentrations. J Neurosci 14:4159–4166PubMedGoogle Scholar
  68. Yamamoto BK, Pehek EA, Meltzer HY (1994) Brain region effects of clozapine on amino acid and monoamine transmission. J Clin Psychiatry 55(Suppl B):8–14PubMedGoogle Scholar
  69. Zink M, Schmitt A, May B, Muller B, Braus DF, Henn FA (2004a) Differential effects of long-term treatment with clozapine or haloperidol on GABA transporter expression. Pharmacopsychiatry 37:171–174PubMedCrossRefGoogle Scholar
  70. Zink M, Schmitt A, May B, Muller B, Demirakca T, Braus DF, Henn FA (2004b) Differential effects of long-term treatment with clozapine or haloperidol on GABAA receptor binding and GAD67 expression. Schizophr Res 66:151–157PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Glenn T. Konopaske
    • 1
    • 3
  • Nicolas R. Bolo
    • 1
  • Alo C. Basu
    • 1
  • Perry F. Renshaw
    • 1
    • 2
  • Joseph T. Coyle
    • 1
  1. 1.Department of PsychiatryHarvard Medical SchoolBostonUSA
  2. 2.Department of PsychiatryUniversity of UtahSalt Lake CityUSA
  3. 3.McLean HospitalBelmontUSA

Personalised recommendations