Skip to main content
Log in

Dissociable effects of CB1 receptor blockade on anxiety-like and consummatory behaviors in the novelty-induced hypophagia test in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Central CB1 cannabinoid receptors regulate anxiety-like and appetitive consummatory behaviors. Pharmacological antagonism/inverse-agonism of CB1 receptors increases anxiety and decreases appetitive behaviors; however, neither well-defined dose nor context dependence of these effects has been simultaneously assessed in one behavioral assay.

Objectives

We sought to determine the context and dose dependence of the effects of CB1 receptor blockade on anxiety-like and consummatory behaviors in a model that allowed for simultaneous detection of anxiety-like and consummatory-related behaviors.

Methods

We determined the effects of the CB1 receptor antagonist/inverse-agonist, rimonabant, in the novelty-induced hypophagia (NIH) assay in juvenile male ICR mice.

Results

Rimonabant dose-dependently decreased consumption of a palatable reward solution completely independent of contextual novelty. Grooming and scratching behavior was also increased by rimonabant in a context-independent manner. In contrast, rimonabant increased feeding latency, a measure of anxiety-like behaviors, only in a novel, mildly anxiogenic context. The effects of rimonabant were specific since no effects of rimonabant on despair-like behavior were observed in the tail suspension assay. Blockade of CB2 receptors had no effect on novelty-induced increases in feeding latency or palatable food consumption.

Conclusions

Our findings indicate that CB1 receptor blockade decreases the hedonic value of palatable food irrespective of environmental novelty, whereas the anxiogenic-like effects are highly context-dependent. Blockade of CB2 receptors does not regulate either anxiety-like or consummatory behaviors in the NIH assay. These findings suggest that rimonabant modulates distinct and dissociable neural processes regulating anxiety and consummatory behavior to sculpt complex and context-dependent behavioral repertories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams IB, Martin BR (1996) Cannabis: pharmacology and toxicology in animals and humans. Addiction 91:1585–1614, Abingdon, England

    Article  PubMed  CAS  Google Scholar 

  • Arnone M, Maruani J, Chaperon F, Thiebot MH, Poncelet M, Soubrie P, Le Fur G (1997) Selective inhibition of sucrose and ethanol intake by SR 141716, an antagonist of central cannabinoid (CB1) receptors. Psychopharmacology (Berl) 132:104–106

    Article  CAS  Google Scholar 

  • Betancur C, Dell’Omo G, Alleva E (1994) Magnetic field effects on stress-induced analgesia in mice: modulation by light. Neurosci Lett 182:147–150

    Article  PubMed  CAS  Google Scholar 

  • Chhatwal JP, Ressler KJ (2007) Modulation of fear and anxiety by the endogenous cannabinoid system. CNS Spectr 12:211–220

    PubMed  Google Scholar 

  • Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A (2007) Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 370:1706–1713

    Article  PubMed  CAS  Google Scholar 

  • Cota D, Tschop MH, Horvath TL, Levine AS (2006) Cannabinoids, opioids and eating behavior: the molecular face of hedonism? Brain Res Rev 51:85–107

    Article  PubMed  CAS  Google Scholar 

  • Di Marzo V, Matias I (2005) Endocannabinoid control of food intake and energy balance. Nat Neurosci 8:585–589

    Article  PubMed  Google Scholar 

  • Droste SM, Saland SK, Schlitter EK, Rodefer JS (2010) AM 251 differentially effects food-maintained responding depending on food palatability. Pharmacol Biochem Behav 95:443–448

    Article  PubMed  CAS  Google Scholar 

  • Dulawa SC, Hen R (2005) Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test. Neurosci Biobehav Rev 29:771–783

    Article  PubMed  CAS  Google Scholar 

  • Fattore L, Melis M, Fadda P, Pistis M, Fratta W (2010) The endocannabinoid system and nondrug rewarding behaviours. Exp Neurol 224:23–36

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Espejo E, Caraballo I, de Fonseca FR, El Banoua F, Ferrer B, Flores JA, Galan-Rodriguez B (2005) Cannabinoid CB1 antagonists possess antiparkinsonian efficacy only in rats with very severe nigral lesion in experimental parkinsonism. Neurobiol Dis 18:591–601

    Article  PubMed  CAS  Google Scholar 

  • Gardner EL (2011) Addiction and brain reward and antireward pathways. Adv Psychosom Med 30:22–60

    Article  PubMed  Google Scholar 

  • Giuffrida A, Parsons LH, Kerr TM, Rodriguez de Fonseca F, Navarro M, Piomelli D (1999) Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci 2:358–363

    Article  PubMed  CAS  Google Scholar 

  • Griebel G, Stemmelin J, Scatton B (2005) Effects of the cannabinoid CB1 receptor antagonist rimonabant in models of emotional reactivity in rodents. Biol Psychiatry 57:261–267

    Article  PubMed  CAS  Google Scholar 

  • Griffin G, Wray EJ, Tao Q, McAllister SD, Rorrer WK, Aung MM, Martin BR, Abood ME (1999) Evaluation of the cannabinoid CB2 receptor-selective antagonist, SR144528: further evidence for cannabinoid CB2 receptor absence in the rat central nervous system. Eur J Pharmacol 377:117–125

    Article  PubMed  CAS  Google Scholar 

  • Haller J, Bakos N, Szirmay M, Ledent C, Freund TF (2002) The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptor on anxiety. Eur J Neurosci 16:1395–1398

    Article  PubMed  CAS  Google Scholar 

  • Haller J, Varga B, Ledent C, Barna I, Freund TF (2004) Context-dependent effects of CB1 cannabinoid gene disruption on anxiety-like and social behaviour in mice. Eur J Neurosci 19:1906–1912

    Article  PubMed  CAS  Google Scholar 

  • Haring M, Grieb M, Monory K, Lutz B, Moreira FA (2013) Cannabinoid CB(1) receptor in the modulation of stress coping behavior in mice: the role of serotonin and different forebrain neuronal subpopulations. Neuropharmacology 65:83–89

    Article  PubMed  CAS  Google Scholar 

  • Hernandez G, Cheer JF (2012) Effect of CB1 receptor blockade on food-reinforced responding and associated nucleus accumbens neuronal activity in rats. J Neurosci 32:11467–11477

    Article  PubMed  CAS  Google Scholar 

  • Hill MN, Patel S, Campolongo P, Tasker JG, Wotjak CT, Bains JS (2010) Functional interactions between stress and the endocannabinoid system: from synaptic signaling to behavioral output. J Neurosci 30:14980–14986

    Article  PubMed  CAS  Google Scholar 

  • Jarbe TU, Ross T, DiPatrizio NV, Pandarinathan L, Makriyannis A (2006) Effects of the CB1R agonist WIN-55,212-2 and the CB1R antagonists SR-141716 and AM-1387: open-field examination in rats. Pharmacol Biochem Behav 85:243–252

    Article  PubMed  CAS  Google Scholar 

  • Johnson BA (1990) Psychopharmacological effects of cannabis. Br J Hosp Med 43: 114–6, 118–20, 122

    Google Scholar 

  • Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A, Mor M, Tarzia G, La Rana G, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81

    Article  PubMed  CAS  Google Scholar 

  • Kinsey SG, O’Neal ST, Long JZ, Cravatt BF, Lichtman AH (2010) Inhibition of endocannabinoid catabolic enzymes elicits anxiolytic-like effects in the marble burying assay. Pharmacol Biochem Behav 98:21–27

    Article  PubMed  Google Scholar 

  • Kirkham TC, Tucci SA (2006) Endocannabinoids in appetite control and the treatment of obesity. CNS Neurol Disord Drug Targets 5:272–292

    Article  PubMed  CAS  Google Scholar 

  • Lopez HH (2010) Cannabinoid-hormone interactions in the regulation of motivational processes. Horm Behav 58:100–110

    Article  PubMed  CAS  Google Scholar 

  • Lutz B (2009) Endocannabinoid signals in the control of emotion. Curr Opin Pharmacol 9:46–52

    Article  PubMed  CAS  Google Scholar 

  • Mahler SV, Smith KS, Berridge KC (2007) Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances ‘liking’ of a sweet reward. Neuropsychopharmacology 32:2267–2278

    Article  PubMed  CAS  Google Scholar 

  • Maldonado R, Valverde O, Berrendero F (2006) Involvement of the endocannabinoid system in drug addiction. Trends Neurosci 29:225–232

    Article  PubMed  CAS  Google Scholar 

  • Mathes CM, Ferrara M, Rowland NE (2008) Cannabinoid-1 receptor antagonists reduce caloric intake by decreasing palatable diet selection in a novel dessert protocol in female rats. Am J Physiol 295:R67–R75

    CAS  Google Scholar 

  • Naidu PS, Varvel SA, Ahn K, Cravatt BF, Martin BR, Lichtman AH (2007) Evaluation of fatty acid amide hydrolase inhibition in murine models of emotionality. Psychopharmacology (Berl) 192:61–70

    Article  CAS  Google Scholar 

  • Navarro M, Hernandez E, Munoz RM, del Arco I, Villanua MA, Carrera MR, Rodriguez de Fonseca F (1997) Acute administration of the CB1 cannabinoid receptor antagonist SR 141716A induces anxiety-like responses in the rat. Neuroreport 8:491–496

    Article  PubMed  CAS  Google Scholar 

  • Nelson K, Walsh D, Deeter P, Sheehan F (1994) A phase II study of delta-9-tetrahydrocannabinol for appetite stimulation in cancer-associated anorexia. J Palliat Care 10:14–18

    PubMed  CAS  Google Scholar 

  • Nunez E, Benito C, Pazos MR, Barbachano A, Fajardo O, Gonzalez S, Tolon RM, Romero J (2004) Cannabinoid CB2 receptors are expressed by perivascular microglial cells in the human brain: an immunohistochemical study. Synapse 53:208–213, New York, NY

    Article  PubMed  CAS  Google Scholar 

  • Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA, Myers L, Mora Z, Tagliaferro P, Gardner E, Brusco A, Akinshola BE, Liu QR, Hope B, Iwasaki S, Arinami T, Teasenfitz L, Uhl GR (2006) Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci 1074:514–536

    Article  PubMed  CAS  Google Scholar 

  • Onaivi ES, Ishiguro H, Gong JP, Patel S, Meozzi PA, Myers L, Perchuk A, Mora Z, Tagliaferro PA, Gardner E, Brusco A, Akinshola BE, Liu QR, Chirwa SS, Hope B, Lujilde J, Inada T, Iwasaki S, Macharia D, Teasenfitz L, Arinami T, Uhl GR (2008) Functional expression of brain neuronal CB2 cannabinoid receptors are involved in the effects of drugs of abuse and in depression. Ann N Y Acad Sci 1139:434–449

    Article  PubMed  CAS  Google Scholar 

  • Osei-Hyiaman D (2007) Endocannabinoid system in cancer cachexia. Curr Opin Clin Nutr Metab Care 10:443–448

    Article  PubMed  CAS  Google Scholar 

  • Pagotto U, Vicennati V, Pasquali R (2005) The endocannabinoid system and the treatment of obesity. Ann Med 37:270–275

    Article  PubMed  CAS  Google Scholar 

  • Parolaro D, Vigano D, Rubino T (2005) Endocannabinoids and drug dependence. Curr Drug Targets 4:643–655

    CAS  Google Scholar 

  • Patel S, Hillard CJ (2006) Pharmacological evaluation of cannabinoid receptor ligands in a mouse model of anxiety: further evidence for an anxiolytic role for endogenous cannabinoid signaling. J Pharmacol Exp Ther 318:304–311

    Article  PubMed  CAS  Google Scholar 

  • Patel S, Hillard CJ (2008) Adaptations in endocannabinoid signaling in response to repeated homotypic stress: a novel mechanism for stress habituation. Eur J Neurosci 27:2821–2829

    Article  PubMed  Google Scholar 

  • Patel S, Roelke CT, Rademacher DJ, Cullinan WE, Hillard CJ (2004) Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic-pituitary-adrenal axis. Endocrinology 145:5431–5438

    Article  PubMed  CAS  Google Scholar 

  • Pertwee RG (1988) The central neuropharmacology of psychotropic cannabinoids. Pharmacol Ther 36:189–261

    Article  PubMed  CAS  Google Scholar 

  • Plasse TF, Gorter RW, Krasnow SH, Lane M, Shepard KV, Wadleigh RG (1991) Recent clinical experience with dronabinol. Pharmacol Biochem Behav 40:695–700

    Article  PubMed  CAS  Google Scholar 

  • Poncelet M, Maruani J, Calassi R, Soubrie P (2003) Overeating, alcohol and sucrose consumption decrease in CB1 receptor deleted mice. Neurosci Lett 343:216–218

    Article  PubMed  CAS  Google Scholar 

  • Riebe CJ, Pamplona F, Kamprath K, Wotjak CT (2012) Fear relief-toward a new conceptual frame work and what endocannabinoids gotta do with it. Neuroscience 204:159–185. doi:10.1016/j.neuroscience.2011.11.057

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, McLaughlin PJ, Sink K, Makriyannis A, Parker LA (2007) Cannabinoid CB1 receptor inverse agonists and neutral antagonists: effects on food intake, food-reinforced behavior and food aversions. Physiol Behav 91:383–388

    Article  PubMed  CAS  Google Scholar 

  • Sciolino NR, Zhou W, Hohmann AG (2011) Enhancement of endocannabinoid signaling with JZL184, an inhibitor of the 2-arachidonoylglycerol hydrolyzing enzyme monoacylglycerol lipase, produces anxiolytic effects under conditions of high environmental aversiveness in rats. Pharmacol Res 64(3):226–234. doi:10.1016/j.phrs.2011.04.010

    Article  PubMed  CAS  Google Scholar 

  • Serrano A, Parsons LH (2011) Endocannabinoid influence in drug reinforcement, dependence and addiction-related behaviors. Pharmacol Ther 132:215–241

    Article  PubMed  CAS  Google Scholar 

  • Shearman LP, Rosko KM, Fleischer R, Wang J, Xu S, Tong XS, Rocha BA (2003) Antidepressant-like and anorectic effects of the cannabinoid CB1 receptor inverse agonist AM251 in mice. Behav Pharmacol 14:573–582

    Article  PubMed  CAS  Google Scholar 

  • Struwe M, Kaempfer SH, Geiger CJ, Pavia AT, Plasse TF, Shepard KV, Ries K, Evans TG (1993) Effect of dronabinol on nutritional status in HIV infection. Ann Pharmacother 27:827–831

    PubMed  CAS  Google Scholar 

  • Sumislawski JJ, Ramikie TS, Patel S (2011) Reversible gating of endocannabinoid plasticity in the amygdala by chronic stress: a potential role for monoacylglycerol lipase inhibition in the prevention of stress-induced behavioral adaptation. Neuropsychopharmacology 36:2750–2761

    Article  PubMed  CAS  Google Scholar 

  • Sykes SM, Henton WW (1982) Control of wheel running by near-ultraviolet light. Physiol Behav 29:965–970

    Article  PubMed  CAS  Google Scholar 

  • Tallett AJ, Blundell JE, Rodgers JR (2007a) Acute anorectic response to cannabinoid CB1 receptor antagonist/inverse agonist AM 251 in rats: indirect behavioural mediation. Behav Pharmacol 18:591–600

    Article  PubMed  Google Scholar 

  • Tallett AJ, Blundell JE, Rodgers RJ (2007b) Grooming, scratching and feeding: role of response competition in acute anorectic response to rimonabant in male rats. Psychopharmacology (Berl) 195:27–39

    Article  CAS  Google Scholar 

  • Thornton-Jones ZD, Vickers SP, Clifton PG (2005) The cannabinoid CB1 receptor antagonist SR141716A reduces appetitive and consummatory responses for food. Psychopharmacology (Berl) 179:452–460

    Article  CAS  Google Scholar 

  • Thornton-Jones ZD, Kennett GA, Vickers SP, Clifton PG (2007) A comparison of the effects of the CB(1) receptor antagonist SR141716A, pre-feeding and changed palatability on the microstructure of ingestive behaviour. Psychopharmacology (Berl) 193:1–9

    Article  CAS  Google Scholar 

  • Tzavara ET, Davis RJ, Perry KW, Li X, Salhoff C, Bymaster FP, Witkin JM, Nomikos GG (2003) The CB1 receptor antagonist SR141716A selectively increases monoaminergic neurotransmission in the medial prefrontal cortex: implications for therapeutic actions. Br J Pharmacol 138:544–553

    Article  PubMed  CAS  Google Scholar 

  • Verty AN, McGregor IS, Mallet PE (2004) Consumption of high carbohydrate, high fat, and normal chow is equally suppressed by a cannabinoid receptor antagonist in non-deprived rats. Neurosci Lett 354:217–220

    Article  PubMed  CAS  Google Scholar 

  • Vickers SP, Kennett GA (2005) Cannabinoids and the regulation of ingestive behaviour. Curr Drug Targets 6:215–223

    Article  PubMed  CAS  Google Scholar 

  • Viveros MP, Marco EM, Llorente R, Lopez-Gallardo M (2007) Endocannabinoid system and synaptic plasticity: implications for emotional responses. Neural Plast: 52908

  • Wiley JL, Burston JJ, Leggett DC, Alekseeva OO, Razdan RK, Mahadevan A, Martin BR (2005) CB1 cannabinoid receptor-mediated modulation of food intake in mice. Br J Pharmacol 145:293–300

    Article  PubMed  CAS  Google Scholar 

  • Wiskerke J, Pattij T, Schoffelmeer AN, De Vries TJ (2008) The role of CB1 receptors in psychostimulant addiction. Addict Biol 13:225–238

    Article  PubMed  CAS  Google Scholar 

  • Woolridge E, Barton S, Samuel J, Osorio J, Dougherty A, Holdcroft A (2005) Cannabis use in HIV for pain and other medical symptoms. J Pain Symptom Manage 29:358–367

    Article  PubMed  Google Scholar 

  • Wright FL, Rodgers RJ (2012) Low dose naloxone attenuates the pruritic but not anorectic response to rimonabant in male rats. Psychopharmacology (Berl) 226(2):415–431. doi:10.1007/s00213-012-2916-5

    Article  Google Scholar 

  • Xi ZX, Peng XQ, Li X, Song R, Zhang HY, Liu QR, Yang HJ, Bi GH, Li J, Gardner EL (2011) Brain cannabinoid CB(2) receptors modulate cocaine’s actions in mice. Nat Neurosci 14:1160–1166

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by the National Institute of Health MH090412 (S.P.). Behavioral studies were conducted at the Vanderbilt Neurobehavioral Core Facility.

Conflict of interest

The authors declare no financial conflicts of interest. The authors had full control of all data presented herein and will provide original data upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamble-George, J.C., Conger, J.R., Hartley, N.D. et al. Dissociable effects of CB1 receptor blockade on anxiety-like and consummatory behaviors in the novelty-induced hypophagia test in mice. Psychopharmacology 228, 401–409 (2013). https://doi.org/10.1007/s00213-013-3042-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3042-8

Keywords

Navigation