Skip to main content
Log in

The CRF1 receptor antagonist SSR125543 prevents stress-induced cognitive deficit associated with hippocampal dysfunction: Comparison with paroxetine and d-cycloserine

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The selective CRF1 (corticotropin releasing factor type 1) receptor antagonist SSR125543 has been previously shown to attenuate the long-term cognitive deficit produced by traumatic stress exposure. Memory disturbances described in post-traumatic stress disorder (PTSD) patients are believed to be associated with changes in neuronal activity, in particular at the level of the hippocampus.

Objectives

The present study aims at investigating whether the effects of SSR125543 (10 mg/kg/day for 2 weeks) on cognitive impairment induced by traumatic stress exposure are associated with changes in hippocampal excitability. Effects of SSR125543 were compared to those of the 5-HT reuptake inhibitor, paroxetine (10 mg/kg/day), and the partial N-methyl-d-aspartate (NMDA) receptor agonist, d-cycloserine (10 mg/kg/day), two compounds which have demonstrated clinical efficacy against PTSD.

Methods

Mice received two unavoidable electric foot-shocks. Then, 1 or 16 days after stress, they were tested for their memory performance using the object recognition test. Neuronal excitability was recorded during the third week post-stress in the CA1 area of the hippocampus. Drugs were administered from day 1 post-stress to the day preceding the electrophysiological study.

Results

Application of electric shocks produced cognitive impairment 16, but not 1 day after stress, an effect which was associated with a decrease in hippocampal neuronal excitability. Both stress-induced effects were prevented by repeated administration of SSR125543, paroxetine and d-cycloserine.

Conclusions

These findings confirm that the CRF1 receptor antagonist SSR125543 is able to attenuate the behavioral effects of traumatic stress exposure and indicate that these effects are associated with a normalization of hippocampal neuronal excitability impaired by stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acheson DT, Gresack JE, Risbrough VB (2012) Hippocampal dysfunction effects on context memory: possible etiology for posttraumatic stress disorder. Neuropharmacology 62:674–685

    Article  PubMed  CAS  Google Scholar 

  • Adamec R, Fougere D, Risbrough V (2010) CRF receptor blockade prevents initiation and consolidation of stress effects on affect in the predator stress model of PTSD. Int J Neuropsychopharmacol 13:747–757

    Article  PubMed  CAS  Google Scholar 

  • Adamec R, Muir C, Grimes M, Pearcey K (2007) Involvement of noradrenergic and corticoid receptors in the consolidation of the lasting anxiogenic effects of predator stress. Behav Brain Res 179:192–207

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AF (2009) Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci 10:410–422

    Article  PubMed  CAS  Google Scholar 

  • Baker DG, West SA, Nicholson WE, Ekhator NN, Kasckow JW, Hill KK, Bruce AB, Orth DN, Geracioti TD Jr (1999) Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder. Am J Psychiatry 156:585–588

    PubMed  CAS  Google Scholar 

  • Benowitz LI, Routtenberg A (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20:84–91

    Article  PubMed  CAS  Google Scholar 

  • Bremner JD, Licinio J, Darnell A, Krystal JH, Owens MJ, Southwick SM, Nemeroff CB, Charney DS (1997) Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am J Psychiatry 154:624–629

    PubMed  CAS  Google Scholar 

  • Bremner JD, Vermetten E (2004) Neuroanatomical changes associated with pharmacotherapy in posttraumatic stress disorder. Ann N Y Acad Sci 1032:154–157

    Article  PubMed  Google Scholar 

  • Brewin CR, Kleiner JS, Vasterling JJ, Field AP (2007) Memory for emotionally neutral information in posttraumatic stress disorder: a meta-analytic investigation. J Abnorm Psychol 116:448–463

    Article  PubMed  Google Scholar 

  • Chen Y, Dube CM, Rice CJ, Baram TZ (2008) Rapid loss of dendritic spines after stress involves derangement of spine dynamics by corticotropin-releasing hormone. J Neurosci 28:2903–2911

    Article  PubMed  CAS  Google Scholar 

  • de Kleine RA, Hendriks GJ, Kusters WJ, Broekman TG, van Minnen A (2012) A Randomized placebo-controlled trial of d-cycloserine to enhance exposure therapy for posttraumatic stress disorder. Biol Psychiatry 71:962–968

    Article  PubMed  Google Scholar 

  • De Kloet ER, Karst H, Joels M (2008) Corticosteroid hormones in the central stress response: quick-and-slow. Front Neuroendocrinol 29:268–272

    Article  PubMed  Google Scholar 

  • De Kloet ER, Oitzl MS, Joels M (1999) Stress and cognition: are corticosteroids good or bad guys? Trends Neurosci 22:422–426

    Article  PubMed  Google Scholar 

  • Donohue HS, Gabbott PL, Davies HA, Rodriguez JJ, Cordero MI, Sandi C, Medvedev NI, Popov VI, Colyer FM, Peddie CJ, Stewart MG (2006) Chronic restraint stress induces changes in synapse morphology in stratum lacunosum-moleculare CA1 rat hippocampus: a stereological and three-dimensional ultrastructural study. Neuroscience 140:597–606

    Article  PubMed  CAS  Google Scholar 

  • Fujishiro J, Imanishi T, Onozawa K, Tsushima M (2002) Comparison of the anticholinergic effects of the serotonergic antidepressants, paroxetine, fluvoxamine and clomipramine. Eur J Pharmacol 454:183–188

    Article  PubMed  CAS  Google Scholar 

  • Griebel G, Holsboer F (2012) Neuropeptide receptor ligands as drugs for psychiatric diseases: the end of the beginning? Nat Rev Drug Discov 11:462–478

    Article  PubMed  CAS  Google Scholar 

  • Griebel G, Simiand J, Steinberg R, Jung M, Gully D, Roger P, Geslin M, Scatton B, Maffrand JP, Soubrié P (2002) 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-me thylphenyl)ethyl]5-methyl-N-(2-propynyl)-1,3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor1 receptor antagonist: II. Characterization in rodent models of stress-related disorders. J Pharmacol Exp Ther 301:333–345

    Article  PubMed  CAS  Google Scholar 

  • Hajszan T, Maclusky NJ, Leranth C (2005) Short-term treatment with the antidepressant fluoxetine triggers pyramidal dendritic spine synapse formation in rat hippocampus. Eur J Neurosci 21:1299–1303

    Article  PubMed  Google Scholar 

  • Hofmann SG, Meuret AE, Smits JA, Simon NM, Pollack MH, Eisenmenger K, Shiekh M, Otto MW (2006) Augmentation of exposure therapy with d-cycloserine for social anxiety disorder. Arch Gen Psychiatry 63:298–304

    Article  PubMed  CAS  Google Scholar 

  • Holmes A, Heilig M, Rupniak NM, Steckler T, Griebel G (2003) Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol Sci 24:580–588

    Article  PubMed  CAS  Google Scholar 

  • Holsboer F, Ising M (2008) Central CRH system in depression and anxiety—evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol 583:350–357

    Article  PubMed  CAS  Google Scholar 

  • Hubbard DT, Nakashima BR, Lee I, Takahashi LK (2007) Activation of basolateral amygdala corticotropin-releasing factor 1 receptors modulates the consolidation of contextual fear. Neuroscience 150:818–828

    Article  PubMed  CAS  Google Scholar 

  • Ivy AS, Rex CS, Chen Y, Dube C, Maras PM, Grigoriadis DE, Gall CM, Lynch G, Baram TZ (2010) Hippocampal dysfunction and cognitive impairments provoked by chronic early-life stress involve excessive activation of CRH receptors. J Neurosci 30:13005–13015

    Article  PubMed  CAS  Google Scholar 

  • Kerr DS, Campbell LW, Applegate MD, Brodish A, Landfield PW (1991) Chronic stress-induced acceleration of electrophysiologic and morphometric biomarkers of hippocampal aging. J Neurosci 11:1316–1324

    PubMed  CAS  Google Scholar 

  • Kohda K, Harada K, Kato K, Hoshino A, Motohashi J, Yamaji T, Morinobu S, Matsuoka N, Kato N (2007) Glucocorticoid receptor activation is involved in producing abnormal phenotypes of single-prolonged stress rats: a putative post-traumatic stress disorder model. Neuroscience 148:22–33

    Article  PubMed  CAS  Google Scholar 

  • Ledgerwood L, Richardson R, Cranney J (2004) d-Cycloserine and the facilitation of extinction of conditioned fear: consequences for reinstatement. Behav Neurosci 118:505–513

    Article  PubMed  Google Scholar 

  • Ledgerwood L, Richardson R, Cranney J (2005) d-Cycloserine facilitates extinction of learned fear: effects on reacquisition and generalized extinction. Biol Psychiatry 57:841–847

    Article  PubMed  CAS  Google Scholar 

  • Li F, Tsien JZ (2009) Memory and the NMDA receptors. N Engl J Med 361:302–303

    Article  PubMed  CAS  Google Scholar 

  • Li X, Han F, Liu D, Shi Y (2010) Changes of Bax, Bcl-2 and apoptosis in hippocampus in the rat model of post-traumatic stress disorder. Neurol Res 32:579–586

    Article  PubMed  CAS  Google Scholar 

  • Litz BT, Salters-Pedneault K, Steenkamp MM, Hermos JA, Bryant RA, Otto MW, Hofmann SG (2012) A randomized placebo-controlled trial of d-cycloserine and exposure therapy for posttraumatic stress disorder. J Psychiatr Res 46:1184–1190

    Article  PubMed  Google Scholar 

  • McEwen BS (2000) Effects of adverse experiences for brain structure and function. Biol Psychiatry 48:721–731

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS, Sapolsky RM (1995) Stress and cognitive function. Curr Opin Neurobiol 5:205–216

    Article  PubMed  CAS  Google Scholar 

  • Naudon L, Hotte M, Jay TM (2007) Effects of acute and chronic antidepressant treatments on memory performance: a comparison between paroxetine and imipramine. Psychopharmacology (Berl) 191:353–364

    Article  CAS  Google Scholar 

  • Nemeroff CB, Owens MJ (2004) Pharmacologic differences among the SSRIs: focus on monoamine transporters and the HPA axis. CNS Spectr 9:23–31

    PubMed  Google Scholar 

  • Overstreet DH, Griebel G (2004) Antidepressant-like effects of CRF1 receptor antagonist SSR125543 in an animal model of depression. Eur J Pharmacol 497:49–53

    Article  PubMed  CAS  Google Scholar 

  • Philbert J, Pichat P, Beeske S, Decobert M, Belzung C, Griebel G (2011) Acute inescapable stress exposure induces long-term sleep disturbances and avoidance behavior: a mouse model of post-traumatic stress disorder (PTSD). Behav Brain Res 221:149–154

    Article  PubMed  CAS  Google Scholar 

  • Philbert J, Pichat P, Palme R, Belzung C, Griebel G (2012) The CRF1 receptor antagonist SSR125543 attenuates long-term cognitive deficit induced by acute inescapable stress in mice, independently from the hypothalamic pituitary adrenal axis. Pharmacol Biochem Behav 102:415–422

    Article  PubMed  CAS  Google Scholar 

  • Pichat P, Bergis OE, Terranova JP, Urani A, Duarte C, Santucci V, Gueudet C, Voltz C, Steinberg R, Stemmelin J, Oury-Donat F, Avenet P, Griebel G, Scatton B (2007) SSR180711, a novel selective alpha7 nicotinic receptor partial agonist: (II) efficacy in experimental models predictive of activity against cognitive symptoms of schizophrenia. Neuropsychopharmacology 32:17–34

    Article  PubMed  CAS  Google Scholar 

  • Poleszak E, Wlaz P, Wrobel A, Fidecka S, Nowak G (2008) NMDA/glutamate mechanism of magnesium-induced anxiolytic-like behavior in mice. Pharmacol Rep 60:655–663

    PubMed  CAS  Google Scholar 

  • Rebaudo R, Melani R, Balestrino M, Izvarina N (2001) Electrophysiological effects of sustained delivery of CRF and its receptor agonists in hippocampal slices. Brain Res 922:112–117

    Article  PubMed  CAS  Google Scholar 

  • Ressler KJ, Rothbaum BO, Tannenbaum L, Anderson P, Graap K, Zimand E, Hodges L, Davis M (2004) Cognitive enhancers as adjuncts to psychotherapy: use of d-cycloserine in phobic individuals to facilitate extinction of fear. Arch Gen Psychiatry 61:1136–1144

    Article  PubMed  Google Scholar 

  • Rey M, Carlier E, Soumireu-Mourat B (1987) Effects of corticosterone on hippocampal slice electrophysiology in normal and adrenalectomized BALB/c mice. Neuroendocrinology 46:424–429

    Article  PubMed  CAS  Google Scholar 

  • Roozendaal B, McEwen BS, Chattarji S (2009) Stress, memory and the amygdala. Nat Rev Neurosci 10:423–433

    Article  PubMed  CAS  Google Scholar 

  • Rorick-Kehn LM, Hart JC, McKinzie DL (2005) Pharmacological characterization of stress-induced hyperthermia in DBA/2 mice using metabotropic and ionotropic glutamate receptor ligands. Psychopharmacology 1–15

  • Rouaud E, Billard JM (2003) d-Cycloserine facilitates synaptic plasticity but impairs glutamatergic neurotransmission in rat hippocampal slices. Br J Pharmacol 140:1051–1056

    Article  PubMed  CAS  Google Scholar 

  • Sairanen M, O'Leary OF, Knuuttila JE, Castren E (2007) Chronic antidepressant treatment selectively increases expression of plasticity-related proteins in the hippocampus and medial prefrontal cortex of the rat. Neuroscience 144:368–374

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57:925–935

    Article  PubMed  CAS  Google Scholar 

  • Schuff N, Neylan TC, Fox-Bosetti S, Lenoci M, Samuelson KW, Studholme C, Kornak J, Marmar CR, Weiner MW (2008) Abnormal N-acetylaspartate in hippocampus and anterior cingulate in posttraumatic stress disorder. Psychiatry Res 162:147–157

    Article  PubMed  CAS  Google Scholar 

  • Siegmund A, Wotjak CT (2006) Toward an animal model of posttraumatic stress disorder. Ann N Y Acad Sci 1071:324–334

    Article  PubMed  Google Scholar 

  • Sousa N, Lukoyanov NV, Madeira MD, Almeida OF, Paula-Barbosa MM (2000) Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 97:253–266

    Article  PubMed  CAS  Google Scholar 

  • Surget A, Wang Y, Leman S, Ibarguen-Vargas Y, Edgar N, Griebel G, Belzung C, Sibille E (2009) Corticolimbic transcriptome changes are state-dependent and region-specific in a rodent model of depression and of antidepressant reversal. Neuropsychopharmacology 34:1363–1380

    Article  PubMed  CAS  Google Scholar 

  • Tokarski K, Czyrak A, Mackowiak M, Wedzony K, Bijak M (1996) Prolonged treatment with antidepressants increases the 5-HT1A-mediated inhibition of hippocampal neurons without changing the 5-HT1A receptor binding. Acta Physiol Hung 84:343–344

    PubMed  CAS  Google Scholar 

  • Urani A, Philbert J, Cohen C, Griebel G (2011) The corticotropin-releasing factor 1 receptor antagonist, SSR125543, and the vasopressin 1b receptor antagonist, SSR149415, prevent stress-induced cognitive impairment in mice. Pharmacol Biochem Behav 98:425–431

    Article  PubMed  CAS  Google Scholar 

  • Van PK, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C, Prins GS, Perrin M, Vale W, Sawchenko PE (2000) Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol 428:191–212

    Article  Google Scholar 

  • Vermetten E, Vythilingam M, Southwick SM, Charney DS, Bremner JD (2003) Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol Psychiatry 54:693–702

    Article  PubMed  CAS  Google Scholar 

  • Vidal C, Jordan W, Zieglgansberger W (1986) Corticosterone reduces the excitability of hippocampal pyramidal cells in vitro. Brain Res 383:54–59

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Zuo D, He B, Qiao F, Zhao M, Wu Y (2012) Conditioned fear stress combined with single-prolonged stress: a new PTSD mouse model. Neurosci Res 73:142–152

    Article  PubMed  Google Scholar 

  • Woon FL, Sood S, Hedges DW (2010) Hippocampal volume deficits associated with exposure to psychological trauma and posttraumatic stress disorder in adults: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 34:1181–1188

    Article  PubMed  Google Scholar 

  • Yamamoto S, Morinobu S, Fuchikami M, Kurata A, Kozuru T, Yamawaki S (2008) Effects of single prolonged stress and d-cycloserine on contextual fear extinction and hippocampal NMDA receptor expression in a rat model of PTSD. Neuropsychopharmacology 33:2108–2116

    Article  PubMed  CAS  Google Scholar 

  • Youssef FF, Addae JI, Stone TW (2006) NMDA-induced preconditioning attenuates synaptic plasticity in the rat hippocampus. Brain Res 1073–1074:183–189

    Article  PubMed  Google Scholar 

  • Zahorodna A, Tokarski K, Hess G (2006) Imipramine treatment ameliorates corticosterone-induced alterations in the effects of 5-HT1A and 5-HT4 receptor activation in the CA1 area of rat hippocampus. Eur Neuropsychopharmacol 16:383–390

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Bruno Biton, Christophe Lanneau and Philippe Pichat for their advice, and Pauline Cervello, and Nicolas Redon for technical help with the electrophysiological studies.

Conflict of interest

This study was sponsored by Sanofi. Julie Philbert and Guy Griebel are employees of Sanofi. Catherine Belzung has no financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Griebel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philbert, J., Belzung, C. & Griebel, G. The CRF1 receptor antagonist SSR125543 prevents stress-induced cognitive deficit associated with hippocampal dysfunction: Comparison with paroxetine and d-cycloserine. Psychopharmacology 228, 97–107 (2013). https://doi.org/10.1007/s00213-013-3020-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3020-1

Keywords

Navigation