Skip to main content
Log in

Involvement of spinal 5-HT1A receptors in isolation rearing-induced hypoalgesia in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Isolation rearing in rodents causes not only abnormal behaviors which resemble the clinical symptoms of schizophrenia but also hypoalgesia in thermal nociception models. However, the mechanism of the hypoalgesia is not known.

Objectives

The present study investigated the effect of isolation rearing on acute pain and the descending pain inhibitory pathways in mice.

Results

Rearing in isolation for 6 weeks from post-weaning reduced pain sensitivity in the hot plate test and acetic acid-induced writhing test. Isolation rearing also reduced the intraplantar capsaicin-induced licking behavior. Capsaicin increased c-Fos expression, a neuronal activity marker, in the spinal cord and primary somatosensory cortex both in group- and isolation-reared mice, but this effect did not differ between groups. On the other hand, c-Fos expression in the anterior cingulate cortex, periaqueductal gray matter, and rostral ventromedial medulla, but not in the spinal cord or somatosensory cortex, was enhanced by isolation rearing. Systemic administration of WAY100635 (serotonin (5-HT)1A receptor antagonist), but not of ketanserin (5-HT2 receptor antagonist), prazosin (α1-adrenoceptor antagonist), or yohimbine (α2-adrenoceptor antagonist), attenuated isolation rearing-induced hypoalgesia in capsaicin-induced licking behavior. Attenuation of isolation rearing-induced hypoalgesia was also observed following the intrathecal injection of WAY100635. Naloxone, an opioid receptor antagonist, did not affect the hypoalgesia in isolation-reared mice.

Conclusions

These findings suggest that isolation rearing causes hypoalgesia in mouse models of acute pain and imply that the spinal 5-HT1A receptor activation probably through descending serotonergic inhibitory pathway is involved in isolation rearing-induced hypoalgesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ago Y, Nakamura S, Uda M, Kajii Y, Abe M, Baba A, Matsuda T (2006) Attenuation by the 5-HT1A receptor agonist osemozotan of the behavioral effects of single and repeated methamphetamine in mice. Neuropharmacology 51:914–922

    Article  PubMed  CAS  Google Scholar 

  • Ago Y, Takahashi K, Nakamura S, Hashimoto H, Baba A, Matsuda T (2007) Anxiety-like and exploratory behaviors of isolation-reared mice in the staircase test. J Pharmacol Sci 104:153–158

    Article  PubMed  CAS  Google Scholar 

  • Ago Y, Arikawa S, Yata M, Yano K, Abe M, Takuma K, Matsuda T (2008) Antidepressant-like effects of the glucocorticoid receptor antagonist RU-43044 are associated with changes in prefrontal dopamine in mouse models of depression. Neuropharmacology 55:1355–1363

    Article  PubMed  CAS  Google Scholar 

  • Ago Y, Yano K, Hiramatsu N, Takuma K, Matsuda T (2011) Fluvoxamine enhances prefrontal dopaminergic neurotransmission in adrenalectomized/castrated mice via both 5-HT reuptake inhibition and σ1 receptor activation. Psychopharmacol Berl 217:377–386

    Article  CAS  Google Scholar 

  • Ago Y, Araki R, Yano K, Kawasaki T, Chaki S, Nakazato A, Onoe H, Hashimoto H, Baba A, Takuma K, Matsuda T (2012) The selective metabotropic glutamate 2/3 receptor agonist MGS0028 reverses isolation rearing-induced abnormal behaviors in mice. J Pharmacol Sci 118:295–298

    Article  PubMed  CAS  Google Scholar 

  • Bardin L (2011) The complex role of serotonin and 5-HT receptors in chronic pain. Behav Pharmacol 22:390–404

    Article  PubMed  CAS  Google Scholar 

  • Beaudry H, Dubois D, Gendron L (2011) Activation of spinal μ- and δ-opioid receptors potently inhibits substance P release induced by peripheral noxious stimuli. J Neurosci 31:13068–13077

    Article  PubMed  CAS  Google Scholar 

  • Blumensohn R, Ringler D, Eli I (2002) Pain perception in patients with schizophrenia. J Nerv Ment Dis 190:481–483

    Article  PubMed  Google Scholar 

  • Brenes JC, Rodríguez O, Fornazuera J (2008) Differential effect of environment enrichment and social isolation on depressive-like behavior, spontaneous activity and serotonin and norepinephrine concentration in prefrontal cortex and ventral striatum. Pharmacol Biochem Behav 89:85–93

    Article  PubMed  CAS  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  • Cavanaugh DJ, Lee H, Lo L, Shields SD, Zylka MJ, Basbaum AI, Anderson DJ (2009) Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc Natl Acad Sci USA 106:9075–9080

    Article  PubMed  CAS  Google Scholar 

  • Coggeshall RE (2005) Fos, nociception and the dorsal horn. Prog Neurobiol 77:299–352

    PubMed  CAS  Google Scholar 

  • Coudereau JP, Monier C, Bourre JM, Frances H (1997) Effect of isolation on pain threshold and on different effects of morphine. Prog Neuropsychopharmacol Biol Psychiatry 21:997–1018

    Article  PubMed  CAS  Google Scholar 

  • Cui M, Feng Y, McAdoo DJ, Willis WD (1999) Periaqueductal gray stimulation-induced inhibition of nociceptive dorsal horn neurons in rats is associated with the release of norepinephrine, serotonin, and amino acids. J Pharmacol Exp Ther 289:868–876

    PubMed  CAS  Google Scholar 

  • Dworkin RH (1994) Pain insensitivity in schizophrenia: a neglected phenomenon and some implications. Schizophr Bull 20:235–248

    Article  PubMed  CAS  Google Scholar 

  • Fone KC, Porkess MV (2008) Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 32:1087–1102

    Article  PubMed  CAS  Google Scholar 

  • Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • García-Martinez C, Humet M, Planells-Cases R, Gomis A, Caprini M, Viana F, De La Pena E, Sanchez-Baeza F, Carbonell T, De Felipe C, Pérez-Paya E, Belmonte C, Messeguer A, Ferrer-Montiel A (2002) Attenuation of thermal nociception and hyperalgesia by VR1 blockers. Proc Natl Acad Sci USA 99:2374–2379

    Article  PubMed  Google Scholar 

  • Hashimoto T, Maze M, Ohashi Y, Fujinaga M (2001) Nitrous oxide activates GABAergic neurons in the spinal cord in Fischer rats. Anesthesiology 95:463–469

    Article  PubMed  CAS  Google Scholar 

  • Heinricher MM, Tavares I, Leith JL, Lumb BM (2009) Descending control of nociception: specificity, recruitment and plasticity. Brain Res Rev 60:214–225

    Article  PubMed  CAS  Google Scholar 

  • Hohmann AG, Neely MH, Piña J, Nackley AG (2005) Neonatal chronic hind paw inflammation alters sensitization to intradermal capsaicin in adult rats: a behavioral and immunocytochemical study. J Pain 6:798–808

    Article  PubMed  CAS  Google Scholar 

  • Huo FQ, Qu CL, Li YQ, Tang JS, Jia H (2008) GABAergic modulation is involved in the ventrolateral orbital cortex 5-HT1A receptor activation-induced antinociception in the rat. Pain 139:398–405

    Article  PubMed  CAS  Google Scholar 

  • Hylden JL, Wilcox GL (1980) Intrathecal morphine in mice: a new technique. Eur J Pharmacol 67:313–316

    Article  PubMed  CAS  Google Scholar 

  • Jinks SL, Simons CT, Dessirier JM, Carstens MI, Antognini JF, Carstens E (2002) C-fos induction in rat superficial dorsal horn following cutaneous application of noxious chemical or mechanical stimuli. Exp Brain Res 145:261–269

    Article  PubMed  Google Scholar 

  • Kalliomäki J, Weng HR, Nilsson HJ, Schouenborg J (1993a) Nociceptive C fibre input to the primary somatosensory cortex (SI). A field potential study in the rat. Brain Res 622:262–270

    Article  PubMed  Google Scholar 

  • Kalliomäki J, Weng HR, Nilsson HJ, Yu YB, Schouenborg J (1993b) Multiple spinal pathways mediate cutaneous nociceptive C fibre input to the primary somatosensory cortex (SI) in the rat. Brain Res 622:271–279

    Article  PubMed  Google Scholar 

  • Karai L, Brown DC, Mannes AJ, Connelly ST, Brown J, Gandal M, Wellisch OM, Neubert JK, Olah Z, Iadarola MJ (2004) Deletion of vanilloid receptor 1-expressing primary afferent neurons for pain control. J Clin Invest 113:1344–1352

    PubMed  CAS  Google Scholar 

  • Koda K, Ago Y, Kawasaki T, Hashimoto H, Baba A, Matsuda T (2008) Galantamine and donepezil differently affect isolation rearing-induced deficits of prepulse inhibition in mice. Psychopharmacol Berl 196:293–301

    Article  CAS  Google Scholar 

  • Koda K, Ago Y, Cong Y, Kita Y, Takuma K, Matsuda T (2010) Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice. J Neurochem 114:259–270

    PubMed  CAS  Google Scholar 

  • Lawson JJ, McIlwrath SL, Woodbury CJ, Davis BM, Koerber HR (2008) TRPV1 unlike TRPV2 is restricted to a subset of mechanically insensitive cutaneous nociceptors responding to heat. J Pain 9:298–308

    Article  PubMed  CAS  Google Scholar 

  • Lukkes JL, Mokin MV, Scholl JL, Forster GL (2009a) Adult rats exposed to early-life social isolation exhibit increased anxiety and conditioned fear behavior, and altered hormonal stress responses. Horm Behav 55:248–256

    Article  PubMed  CAS  Google Scholar 

  • Lukkes J, Vuong S, Scholl J, Oliver H, Forster G (2009b) Corticotropin-releasing factor receptor antagonism within the dorsal raphe nucleus reduces social anxiety-like behavior after early-life social isolation. J Neurosci 29:9955–9960

    Article  PubMed  CAS  Google Scholar 

  • Mantovani M, Kaster MP, Pertile R, Calixto JB, Rodrigues AL, Santos AR (2006) Mechanisms involved in the antinociception caused by melatonin in mice. J Pineal Res 41:382–389

    Article  PubMed  CAS  Google Scholar 

  • Matsuda T, Yoshikawa T, Suzuki M, Asano S, Somboonthum P, Takuma K, Nakano Y, Morita T, Nakasu Y, Kim HS, Egawa M, Tobe A, Baba A (1995) Novel benzodioxan derivative, 5-{3-[((2S)-1,4-benzodioxan-2-ylmethyl)amino]propoxy}-1,3-benzodioxole HCl (MKC-242), with a highly potent and selective agonist activity at rat central serotonin1A receptors. Jpn J Pharmacol 69:357–366

    Article  PubMed  CAS  Google Scholar 

  • Meng Q, Li N, Han X, Shao F, Wang W (2010) Peri-adolescence isolation rearing alters social behavior and nociception in rats. Neurosci Lett 480:25–29

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ (2002) Descending control of pain. Prog Neurobiol 66:355–474

    Article  PubMed  CAS  Google Scholar 

  • Mohamad AS, Akhtar MN, Zakaria ZA, Perimal EK, Khalid S, Mohd PA, Khalid MH, Israf DA, Lajis NH, Sulaiman MR (2010) Antinociceptive activity of a synthetic chalcone, flavokawin B on chemical and thermal models of nociception in mice. Eur J Pharmacol 647:103–109

    Article  PubMed  CAS  Google Scholar 

  • Muchimapura S, Fulford AJ, Mason R, Marsden CA (2002) Isolation rearing in the rat disrupts the hippocampal response to stress. Neuroscience 112:697–705

    Article  PubMed  CAS  Google Scholar 

  • Mukaida K, Shichino T, Fukuda K (2007) Nitrous oxide increases serotonin release in the rat spinal cord. J Anesth 21:433–435

    Article  PubMed  Google Scholar 

  • Murakami H, Tamasawa N, Yamashita M, Takayasu S, Nigawara T, Matsui J, Suda T (2010) Altered pain perception in schizophrenia. Lancet 375:864

    Article  PubMed  Google Scholar 

  • Nagy I, Sántha P, Jancsó G, Urbán L (2004) The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. Eur J Pharmacol 500:351–369

    Article  PubMed  CAS  Google Scholar 

  • Orii R, Ohashi Y, Guo T, Nelson LE, Hashimoto T, Maze M, Fujinaga M (2002) Evidence for the involvement of spinal cord alpha1 adrenoceptors in nitrous oxide-induced antinociceptive effects in Fischer rats. Anesthesiology 97:1458–1465

    Article  PubMed  CAS  Google Scholar 

  • Park C, Kim JH, Yoon BE, Choi EJ, Lee CJ, Shin HS (2010) T-type channels control the opioidergic descending analgesia at the low threshold-spiking GABAergic neurons in the periaqueductal gray. Proc Natl Acad Sci USA 107:14857–14862

    Article  PubMed  CAS  Google Scholar 

  • Potvin S, Marchand S (2008) Hypoalgesia in schizophrenia is independent of antipsychotic drugs: a systematic quantitative review of experimental studies. Pain 138:70–78

    Article  PubMed  CAS  Google Scholar 

  • Potvin S, Stip E, Tempier A, Pampoulova T, Bentaleb LA, Lalonde P, Lipp O, Goffaux P, Marchand S (2008) Pain perception in schizophrenia: no changes in diffuse noxious inhibitory controls (DNIC) but a lack of pain sensitization. J Psychiatr Res 42:1010–1016

    Article  PubMed  Google Scholar 

  • Rigoni M, Trevisani M, Gazzieri D, Nadaletto R, Tognetto M, Creminon C, Davis JB, Campi B, Amadesi S, Geppetti P, Harrison S (2003) Neurogenic responses mediated by vanilloid receptor-1 (TRPV1) are blocked by the high affinity antagonist, iodo-resiniferatoxin. Br J Pharmacol 138:977–985

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal SH, Porter KA, Coffey B (1990) Pain insensitivity in schizophrenia case report and review of the literature. Gen Hosp Psychiatry 12:319–322

    Article  PubMed  CAS  Google Scholar 

  • Santos AR, Gadotti VM, Oliveira GL, Tibola D, Paszcuk AF, Neto A, Spindola HM, Souza MM, Rodrigues AL, Calixto JB (2005) Mechanisms involved in the antinociception caused by agmatine in mice. Neuropharmacology 48:1021–1034

    Article  PubMed  CAS  Google Scholar 

  • Singh MK, Giles LL, Nasrallah HA (2006) Pain insensitivity in schizophrenia: trait or state marker? J Psychiatr Pract 12:90–102

    Article  PubMed  Google Scholar 

  • Stewart W, Maxwell DJ (2000) Morphological evidence for selective modulation by serotonin of a subpopulation of dorsal horn cells which possess the neurokinin-1 receptor. Eur J Neurosci 12:4583–4588

    PubMed  CAS  Google Scholar 

  • Szallasi A, Blumberg PM (1999) Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev 51:159–212

    PubMed  CAS  Google Scholar 

  • Tanabe M, Tokuda Y, Takasu K, Ono K, Honda M, Ono H (2007) The synthetic TRH analogue taltirelin exerts modality-specific antinociceptive effects via distinct descending monoaminergic systems. Br J Pharmacol 50:403–414

    Google Scholar 

  • Tang L, Chen Y, Chen Z, Blumberg PM, Kozikowski AP, Wang ZJ (2007) Antinociceptive pharmacology of N-(4-chlorobenzyl)-N'-(4-hydroxy-3-iodo-5-methoxybenzyl) thiourea, a high-affinity competitive antagonist of the transient receptor potential vanilloid 1 receptor. J Pharmacol Exp Ther 321:791–798

    Article  PubMed  CAS  Google Scholar 

  • Tang JS, Qu CL, Huo FQ (2009) The thalamic nucleus submedius and ventrolateral orbital cortex are involved in nociceptive modulation: a novel pain modulation pathway. Prog Neurobiol 89:383–389

    Article  PubMed  Google Scholar 

  • Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    Article  PubMed  CAS  Google Scholar 

  • Tuboly G, Benedek G, Horvath G (2009) Selective disturbance of pain sensitivity after social isolation. Physiol Behav 96:18–22

    Article  PubMed  CAS  Google Scholar 

  • Willis WD Jr (2009) The role of TRPV1 receptors in pain evoked by noxious thermal and chemical stimuli. Exp Brain Res 196:5–11

    Article  PubMed  CAS  Google Scholar 

  • Xie YF, Huo FQ, Tang JS (2009) Cerebral cortex modulation of pain. Acta Pharmacol Sin 30:31–41

    Article  PubMed  CAS  Google Scholar 

  • Yeomans DC, Pirec V, Proudfit HK (1996) Nociceptive responses to high and low rates of noxious cutaneous heating are mediated by different nociceptors in the rat: behavioral evidence. Pain 68:133–140

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura M, Furue H (2006) Mechanisms for the anti-nociceptive actions of the descending noradrenergic and serotonergic systems in the spinal cord. J Pharmacol Sci 101:107–117

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Sun L, Jia H, Meng Q, Wu S, Li N, He S (2009) Isolation rearing induces social and emotional function abnormalities and alters glutamate and neurodevelopment-related gene expression in rats. Prog Neuropsychopharmacol Biol Psychiatry 33:1173–1177

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (from the Ministry of Education, Culture, Sports, Science and Technology of Japan).

Conflict of interest

The authors state no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Matsuda.

Additional information

Authors Naotaka Horiguchi and Yukio Ago equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horiguchi, N., Ago, Y., Asada, K. et al. Involvement of spinal 5-HT1A receptors in isolation rearing-induced hypoalgesia in mice. Psychopharmacology 227, 251–261 (2013). https://doi.org/10.1007/s00213-012-2959-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2959-7

Keywords

Navigation