Skip to main content

Advertisement

Log in

Pharmacological and behavioral profile of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-6-chinolincarboxamide (EVP-5141), a novel α7 nicotinic acetylcholine receptor agonist/serotonin 5-HT3 receptor antagonist

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale and objective

Agonists of α7 nicotinic acetylcholine receptors (nAChRs) may have therapeutic potential for the treatment of cognitive deficits. This study describes the in vitro pharmacology of the novel α7 nAChR agonist/serotonin 5-HT3 receptor (5-HT3R) antagonist N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-6-chinolincarboxamide (EVP-5141) and its behavioral effects.

Results

EVP-5141 bound to α7 nAChRs in rat brain membranes (K i  = 270 nM) and to recombinant human serotonin 5-HT3Rs (K i  = 880 nM) but had low affinity for α4β2 nAChRs (K i  > 100 μM). EVP-5141 was a potent agonist at recombinant rat and human α7 nAChRs expressed in Xenopus oocytes. EVP-5141 acted as 5-HT3R antagonist but did not block α3β4, α4β2, and muscle nAChRs. Rats trained to discriminate nicotine from vehicle did not generalize to EVP-5141 (0.3–30 mg kg−1, p.o.), suggesting that the nicotine cue is not mediated by the α7 nAChR and that EVP-5141 may not share the abuse liability of nicotine. EVP-5141 (0.3–3 mg kg−1) improved performance in the rat social recognition test. EVP-5141 (0.3 mg kg−1, p.o.) ameliorated scopolamine-induced retention deficits in the passive avoidance task in rats. EVP-5141 (1 mg kg−1, i.p.) improved spatial working memory of aged (26- to 32-month-old) rats in a water maze repeated acquisition task. In addition, EVP-5141 improved both object and social recognition memory in mice (0.3 mg kg−1, p.o.).

Conclusions

EVP-5141 improved performance in several learning and memory tests in both rats and mice, supporting the hypothesis that α7 nAChR agonists may provide a novel therapeutic strategy for the treatment of cognitive deficits in Alzheimer's disease or schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A-582941:

2-Methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole

1–40 :

Amyloid peptide

ABBF:

N–[(3R)-1-Azabicyclo[2.2.2]oct–3–yl]–7–[2–(methoxy)phenyl]-1-benzofuran-2-carboxamide

ABT-107:

5-(6-[(3R)-1-Azabicyclo[2,2,2]oct-3-yloxy]pyridazin-3-yl)-1H-indole

ACh:

Acetylcholine

ANOVA:

Analysis of variance

AR-R17779:

(−)-Spiro[1-azabicyclo[2.2.2]octane-3,5′-oxazolidin-2′-one]

AZD0328:

(2′R)-Spiro-[1-azabicyclo[2.2.2]octane-3,2′(3′H)-furo[2,3-b]pyridine] d-tartrate

d1:

Discrimination index

d2:

Unbiased discrimination index

EVP-5141:

N-[(3R)-1-Azabicyclo[2.2.2]oct-3-yl]-6-chinolincarboxamide

EVP-6124:

(R)-7-Chloro-N-quinuclidin-3-yl)benzo[b]thiophene-2-carboxamide

GR65630:

3-(5-Methyl-1H-imidazol-4-yl)-1-(1-methyl-1H-indol-3-yl)-1-propanone

GTS-21:

3-(2,4-Dimethoxybenzylidene)anabaseine

5-HT:

Serotonin (5-hydroxytryptamine)

5-HT3R:

5-HT3 receptor

JN403:

(S)-(1-Aza-bicyclo[2.2.2]oct-3-yl)-carbamic acid (S)-1-(2-fluoro-phenyl)-ethyl ester

LSD:

Fisher's least significant difference post hoc test

LTP:

Long-term potentiation

MLA:

Methyllycaconitine

nAChR:

Nicotinic acetylcholine receptor

NFR:

Normal frog Ringer's solution

RG3487:

N-[(3S)-1-Azabicyclo[2.2.2]oct-3-yl]-1H-indazole-3-carboxamide hydrochloride

S 24795:

2-[2-(4-Bromophenyl)-2-oxoethyl]-1-methyl pyridinium

SEN12333:

5-Morpholin-4-yl-pentanoic acid (4-pyridin-3-yl-phenyl)-amide

SEM:

Standard error of the mean

SSR180711:

1,4-Diazabicyclo(3.2.2)nonane-4-carboxylic acid 4-bromophenyl ester

T1:

Trial 1

T2:

Trial 2

W-56203:

(R)-3′-(3-Methylbenzo[b]thiophen-5-yl)spiro-[1-azabicyclo[2,2,2]-octane-3,5′-oxazolidin]-2′-one, compound 23

References

  • Addy NA, Nakijama A, Levin ED (2003) Nicotinic mechanisms of memory: effects of acute local DHβE and MLA infusions in the basolateral amygdala. Brain Res Cogn Brain Res 16:51–57

    Article  PubMed  CAS  Google Scholar 

  • Arendash GW, Sengstock GJ, Sanberg PR, Kem WR (1995) Improved learning and memory in aged rats with chronic administration of the nicotinic receptor agonist GTS-21. Brain Res 674:252–259

    Article  PubMed  CAS  Google Scholar 

  • Bitner RS, Bunnelle WH, Anderson DJ, Briggs CA, Buccafusco J, Curzon P, Decker MW, Frost JM, Gronlien JH, Gubbins E, Li J, Malysz J, Markosyan S, Marsh K, Meyer MD, Nikkel AL, Radek RJ, Robb HM, Timmermann D, Sullivan JP, Gopalakrishnan M (2007) Broad-spectrum efficacy across cognitive domains by α7 nicotinic acetylcholine receptor agonism correlates with activation of ERK1/2 and CREB phosphorylation pathways. J Neurosci 27:10578–10587

    Article  PubMed  CAS  Google Scholar 

  • Bitner RS, Bunnelle WH, Decker MW, Drescher KU, Kohlhaas KL, Markosyan S, Marsh KC, Nikkel AL, Browman K, Radek R, Anderson DJ, Buccafusco J, Gopalakrishnan M (2010) In vivo pharmacological characterization of a novel selective α7 neuronal nicotinic acetylcholine receptor agonist ABT-107: preclinical considerations in Alzheimer's disease. J Pharmacol Exp Ther 334:875–886

    Article  PubMed  CAS  Google Scholar 

  • Biton B, Bergis OE, Galli F, Nedelec A, Lochead AW, Jegham S, Godet D, Lanneau C, Santamaria R, Chesney F, Léonardon J, Granger P, Debono MW, Bohme GA, Sgard F, Besnard F, Graham D, Coste A, Oblin A, Curet O, Vigé X, Voltz C, Rouquier L, Souilhac J, Santucci V, Gueudet C, Françon D, Steinberg R, Griebel G, Oury-Donat F, George P, Avenet P, Scatton B (2007) SSR180711, a novel selective α7 nicotinic receptor partial agonist: (I) binding and functional profile. Neuropsychopharmacology 32:1–16

    Article  PubMed  CAS  Google Scholar 

  • Boccia MM, Blake MG, Krawczyk MC, Baratti CM (2010) Hippocampal α7 nicotinic receptors modulate memory reconsolidation of an inhibitory avoidance task in mice. Neuroscience 171:531–543

    Article  PubMed  CAS  Google Scholar 

  • Boess FG, De Vry J, Erb C, Flessner T, Hendrix M, Luithle J, Methfessel C, Riedl B, Schnizler K, van der Staay F-J, van Kampen M, Wiese WB, Koenig G (2007) The novel α7 nicotinic acetylcholine receptor agonist N–[(3R)-1-azabicyclo[2.2.2]oct–3–yl]–7–[2–(methoxy)phenyl]-1-benzofuran-2-carboxamide improves working and recognition memory in rodents. J Pharmacol Exp Ther 321:716–725

    Article  PubMed  CAS  Google Scholar 

  • Brioni JD, Kim DJ, O'Neill AB (1996) Nicotine cue: lack of effect of the alpha 7 nicotinic receptor antagonist methyllycaconitine. Eur J Pharmacol 301:1–5

    Article  PubMed  CAS  Google Scholar 

  • Cachelin AB, Rust G (1994) Unusual pharmacology of (+)-tubocurarine with rat neuronal nicotinic acetylcholine receptors containing beta 4 subunits. Mol Pharmacol 46:1168–1174

    PubMed  CAS  Google Scholar 

  • Chen L, Yamada K, Nabeshima T, Sokabe M (2006) α7 nicotinic acetylcholine receptor as a target to rescue deficit in hippocampal LTP induction in β-amyloid infused rats. Neuropharmacology 50:254–268

    Article  PubMed  CAS  Google Scholar 

  • Clarke PB, Schwartz RD, Paul SM, Pert CB, Pert A (1985) Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-α-bungarotoxin. J Neurosci 5:1307–1315

    PubMed  CAS  Google Scholar 

  • Colpaert FC (1982) The pharmacological specificity of opiate drug discrimination. In: Colpaert FC, Slangen JL (eds) Drug discrimination: applications in CNS pharmacology. Elsevier Biomedical, Amsterdam, pp 3–16

    Google Scholar 

  • Curzon P, Anderson DJ, Nikkel AL, Fox GB, Gopalakrishnan M, Decker MW, Bitner RS (2006) Antisense knockdown of the rat α7 nicotinic acetylcholine receptor produces spatial memory impairment. Neurosci Lett 410:15–19

    Article  PubMed  CAS  Google Scholar 

  • De Vry J, Jentzsch KR (1998) Discriminative stimulus properties of the 5-HT1A receptor agonist BAY × 3702 in the rat. Eur J Pharmacol 357:1–8

    Article  PubMed  Google Scholar 

  • Decker MW, Meyer MD, Sullivan JP (2001) The therapeutic potential of nicotinic receptor agonists for pain control. Expert Opin Investig Drugs 10:1819–1830

    Article  PubMed  CAS  Google Scholar 

  • Dodart JC, Mathis C, Ungerer A (1997) Scopolamine-induced deficits in a two-trial object recognition task in mice. NeuroReport 8:1173–1178

    Article  PubMed  CAS  Google Scholar 

  • Dziewczapolski G, Glogowski CM, Masliah E, Heinemann SF (2009) Deletion of the α7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer's disease. J Neurosci 29:8805–8815

    Article  PubMed  CAS  Google Scholar 

  • Epping-Jordan MP, Picciotto MR, Changeux J-P, Pich EM (1999) Assessment of nicotinic acetylcholine receptor subunit contributions to nicotine self-administration in mutant mice. Psychopharmacology 147:25–26

    Article  PubMed  CAS  Google Scholar 

  • Felix R, Levin ED (1997) Nicotinic antagonist administration into the ventral hippocampus and spatial working memory in rats. Neuroscience 81:1009–1017

    Article  PubMed  CAS  Google Scholar 

  • Fernandes C, Hoyle E, Dempster E, Schalkwyk LC, Collier DA (2006) Performance deficit of α7 nicotinic receptor knockout mice in a delayed matching-to-place task suggests a mild impairment of working/episodic-like memory. Genes Brain Behav 5:433–440

    Article  PubMed  CAS  Google Scholar 

  • Feuerbach D, Lingenhoehl K, Olpe HR, Vassout A, Gentsch C, Chaperon F, Nozulak J, Enz A, Bilbe G, McAllister K, Hoyer D (2009) The selective nicotinic acetylcholine receptor α7 agonist JN403 is active in animal models of cognition, sensory gating, epilepsy and pain. Neuropharmacology 56:254–263

    Article  PubMed  CAS  Google Scholar 

  • Gommans J, Stolerman IP, Shoaib M (2000) Antagonism of the discriminative and aversive stimulus properties of nicotine in C57BL/6 J mice. Neuropharmacology 39:2840–2847

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Zoli M, Clementi F (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 27:482–491

    Article  PubMed  CAS  Google Scholar 

  • Grottick AJ, Trube G, Corrigall WA, Huwyler J, Malherbe P, Wyler R, Higgins GA (2000) Evidence that nicotinic α7 receptors are not involved in the hyperlocomotor and rewarding effects of nicotine. J Pharmacol Exp Ther 294:1112–1119

    PubMed  CAS  Google Scholar 

  • Hashimoto K, Ishima T, Fujita Y, Matsuo M, Kobashi T, Takahagi M, Tsukada H, Iyo M (2008) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the novel selective α7 nicotinic receptor agonist SSR180711. Biol Psychiatry 63:92–97

    Article  PubMed  CAS  Google Scholar 

  • Hauser TA, Kucinski A, Jordan KG, Gatto GJ, Wersinger SR, Hesse RA, Stachowiak EK, Stachowiak MK, Papke RL, Lippiello PM, Bencherif M (2009) TC-5619: an alpha7 neuronal nicotinic receptor-selective agonist that demonstrates efficacy in animal models of the positive and negative symptoms and cognitive dysfunction of schizophrenia. Biochem Pharmacol 78:803–812

    Article  PubMed  CAS  Google Scholar 

  • Hu M, Schurdak ME, Puttfarcken PS, El Kouhen R, Gopalakrishnan M, Li J (2007) High content screen microscopy analysis of Aβ1-42-induced neurite outgrowth reduction in rat primary cortical neurons: neuroprotective effects of α7 neuronal nicotinic acetylcholine receptor ligands. Brain Res 1151:227–235

    Article  PubMed  CAS  Google Scholar 

  • Kaiser F, Hudzik T, Borrelli A, Awere S, Cramer C, Widzowski D (1998) AR-R 17779, a selective α7 nicotinic agonist, has anxiolytic and sensory gating-enhancing properties and reduced nicotine-like side-effects. Soc Neurosci Abstr 24:832

    Google Scholar 

  • Kem WR (2000) The brain α7 nicotinic receptor may be an important therapeutic target for the treatment of Alzheimer's disease: studies with DMXBA (GTS-21). Behav Brain Res 113:169–181

    Article  PubMed  CAS  Google Scholar 

  • King SL, Marks MJ, Grady SR, Caldarone BJ, Koren AO, Mukhin AG, Collins AC, Picciotto MR (2003) Conditional expression in corticothalamic efferents reveals a developmental role for nicotinic acetylcholine receptors in modulation of passive avoidance behavior. J Neurosci 23:3837–3843

    PubMed  CAS  Google Scholar 

  • Kitagawa H, Takenouchi T, Azuma R, Wesnes KA, Kramer WG, Clody DE, Burnett AL (2003) Safety, pharmacokinetics, and effects on cognitive function of multiple doses of GTS-21 in healthy, male volunteers. Neuropsychopharmacology 28:542–551

    Article  PubMed  CAS  Google Scholar 

  • Köhler CA, da Silva WC, Benetti F, Bonini JS (2011) Histaminergic mechanisms for modulation of memory systems. Neural Plast 2011:328602

    Article  PubMed  Google Scholar 

  • Lagostena L, Trocme-Thibierge C, Morain P, Cherubini E (2008) The partial α7 nicotine acetylcholine receptor agonist S 24795 enhances long-term potentiation at CA3-CA1 synapses in the adult mouse hippocampus. Neuropharmacology 54:676–685

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Bettegowda C, Blosser J, Gordon J (1999) AR-R17779, an alpha7 nicotinic agonist, improves learning and memory in rats. Behav Pharmacol 10:675–680

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, McClernon FJ, Rezvani AH (2006) Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology 184:523–539

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Huang Y, Xue F, Simard A, DeChon J, Li G, Zhang J, Lucero L, Wang M, Sierks M, Hu G, Chang Y, Lukas RJ, Wu J (2009) A novel nicotinic acetylcholine receptor subtype in basal forebrain cholinergic neurons with high sensitivity to amyloid peptides. J Neurosci 29:918–929

    Article  PubMed  CAS  Google Scholar 

  • Marquis KL, Comery TA, Jow F, Navarra RL, Grauer SM, Pulicicchio C, Kelley C, Brennan JA, Roncarati R, Scali C, Haydar S, Ghiron C, Terstappen GC, Dunlop J (2011) Preclinical assessment of an adjunctive treatment approach for cognitive impairment associated with schizophrenia using the alpha7 nicotinic acetylcholine receptor agonist WYE-103914/SEN34625. Psychopharmacology 218:635–647

    Article  PubMed  CAS  Google Scholar 

  • Marubio LM, Paylor R (2004) Impaired passive avoidance learning in mice lacking central neuronal nicotinic acetylcholine receptors. Neuroscience 129:575–582

    Article  PubMed  CAS  Google Scholar 

  • Merlo Pich E, Chiamulera C, Carboni L (1999) Molecular mechanisms of the positive reinforcing effect of nicotine. Behav Pharmacol 10:587–596

    Article  PubMed  CAS  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  PubMed  CAS  Google Scholar 

  • Mundy WR, Barone S, Tilson HA (1990) Neurotoxic lesions of the nucleus basalis induced by colchicine: effects on spatial navigation in the water maze. Brain Res 512:221–228

    Article  PubMed  CAS  Google Scholar 

  • Nott A, Levin ED (2006) Dorsal hippocampal α7 and α4β2 nicotinic receptors and memory. Brain Res 1081:72–78

    Article  PubMed  CAS  Google Scholar 

  • Oglesby MW, Epping-Jordan MP, Merlo-Pich E, Picciotto MR, Changeux JP (1998) Attenuated nicotine discrimination in mice lacking high affinity nicotine receptors. Soc Neurosci Abstr 24:1196

    Google Scholar 

  • Paterson D, Nordberg A (2000) Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61:75–111

    Article  PubMed  CAS  Google Scholar 

  • Paylor R, Nguyen M, Crawley JN, Patrick J, Beaudet A, Orr-Urtreger A (1998) α7 nicotinic receptor subunits are not necessary for hippocampal-dependent learning or sensorimotor gating: a behavioral characterization of Acra7-deficient mice. Learn Mem 5:302–316

    PubMed  CAS  Google Scholar 

  • Picciotto MR, Zoli M, Léna C, Bessis A, Lallemand Y, LeNovère N, Vincent P, Pich EM, Brûlet P, Changeux J-P (1995) Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374:65–67

    Article  PubMed  CAS  Google Scholar 

  • Picciotto MR, Zoli M, Rimondini R, Léna C, Marubio LM, Pich EM, Fuxe K, Changeux JP (1998) Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–177

    Article  PubMed  CAS  Google Scholar 

  • Pichat P, Bergis OE, Terranova J-P, Urani A, Duarte C, Santucci V, Gueudet C, Voltz C, Steinberg R, Stemmelin J, Oury-Donat F, Avenet P, Griebel G, Scatton B (2007) SSR180711, a novel selective α7 nicotinic receptor partial agonist: (II) efficacy in experimental models predictive of activity against cognitive symptoms of schizophrenia. Neuropsychopharmacology 32:17–34

    Article  PubMed  CAS  Google Scholar 

  • Prickaerts J, Şık A, van der Staay FJ, de Vente J, Blokland A (2005) Dissociable effects of acetylcholinesterase inhibitors and phosphodiesterase type 5 inhibitors on object recognition memory: acquisition versus consolidation. Psychopharmacology 177:381–390

    Article  PubMed  CAS  Google Scholar 

  • Prickaerts J, van Goethem NP, Chesworth R, Shapiro G, Boess FG, Methfessel C, Reneerkens OAH, Flood DG, Hilt D, Gawryl M, Bertrand S, Bertrand D, König G (2012) EVP-6124, a novel and selective α7 nicotinic acetylcholine receptor partial agonist, improves memory performance by potentiating the acetylcholine response of α7 nicotinic acetylcholine receptors. Neuropharmacology 62:1099–1110

    Article  PubMed  CAS  Google Scholar 

  • Puzzo D, Privitera L, Leznik E, Fà M, Staniszewski A, Palmeri A, Arancio O (2008) Picomolar amyloid-β positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 28:14537–14545

    Article  PubMed  CAS  Google Scholar 

  • Ren K, Thinschmidt J, Liu J, Ai L, Papke RL, King MA, Hughes JA, Meyer EM (2007) α7 nicotinic receptor gene delivery into mouse hippocampal neurons leads to functional receptor expression, improved spatial memory-related performance, and tau hyperphosphorylation. Neuroscience 145:314–322

    Article  PubMed  CAS  Google Scholar 

  • Roncarati R, Scali C, Comery TA, Grauer SM, Aschmi S, Bothmann H, Jow B, Kowal D, Gianfriddo M, Kelley C, Zanelli U, Ghiron C, Haydar S, Dunlop J, Terstappen GC (2009) Procognitive and neuroprotective activity of a novel α7 nicotinic acetylcholine receptor agonist for treatment of neurodegenerative and cognitive disorders. J Pharmacol Exp Ther 329:459–468

    Article  PubMed  CAS  Google Scholar 

  • Shoaib M, Zubaran C, Stolerman IP (2000) Antagonism of stimulus properties of nicotine by dihydro-β-erythroidine (DHβE) in rats. Psychopharmacology 149:140–146

    Article  PubMed  CAS  Google Scholar 

  • Shoaib M, Gommans J, Morley A, Stolerman IP, Grailhe R, Changeux J-P (2002) The role of nicotinic receptor beta-2 subunits in nicotine discrimination and conditioned taste aversion. Neuropharmacology 42:530–539

    Article  PubMed  CAS  Google Scholar 

  • Smith JW, Mogg A, Tafi E, Peacey E, Pullar IA, Szekeres P, Tricklebank M (2007) Ligands selective for α4β2 but not α3β4 or α7 nicotinic receptors generalise to the nicotine discriminative stimulus in the rat. Psychopharmacology 190:157–170

    Article  PubMed  CAS  Google Scholar 

  • Stokes C, Porter Papke JK, Horenstein NA, Kem WR, McCormack TJ, Papke RL (2004) The structural basis for GTS-21 selectivity between human and rat nicotinic α7 receptors. Mol Pharmacol 66:14–24

    Article  PubMed  CAS  Google Scholar 

  • Stolerman IP, Naylor C, Elmer GI, Goldberg SR (1999) Discrimination and self-administration of nicotine by inbred strains of mice. Psychopharmacology 141:297–306

    Article  PubMed  CAS  Google Scholar 

  • Stolerman IP, Chamberlain S, Bizarro L, Fernandes C, Schalkwyk L (2004) The role of nicotinic receptor α7 subunits in nicotine discrimination. Neuropharmacology 46:363–371

    Article  PubMed  CAS  Google Scholar 

  • Sydserff S, Sutton EJ, Song D, Quirk MC, Maciag C, Li C, Jonak G, Gurley D, Gordon JC, Christian EP, Doherty JJ, Hudzik T, Johnson E, Mrzljak L, Piser T, Smagin GN, Wang Y, Widzowski D, Smith JS (2009) Selective α7 nicotinic receptor activation by AZD0328 enhances cortical dopamine release and improves learning and attentional processes. Biochem Pharmacol 78:880–888

    Article  PubMed  CAS  Google Scholar 

  • Tatsumi R, Fujio M, Takanashi S, Numata A, Katayama J, Satoh H, Shiigi Y, Maeda J, Kuriyama M, Horikawa T, Murozono T, Hashimoto K, Tanaka H (2006) (R)-3′-(3-Methylbenzo[b]thiophen-5-yl)spiro[1-azabicyclo[2,2,2]octane-3,5′-oxazolidin]-2′-one, a novel and potent α7 nicotinic acetylcholine receptor partial agonist displays cognitive enhancing properties. J Med Chem 49:4374–4383

    Article  PubMed  CAS  Google Scholar 

  • Timmermann DB, Grønlien JH, Kohlhaas KL, Nielsen EØ, Dam E, Jørgensen TD, Ahring PK, Peters D, Holst D, Chrsitensen JK, Malysz J, Briggs CA, Gopalakrishnan M, Olsen GM (2007) An allosteric modulator of the α7 nicotinic acetylcholine receptor possessing cognition-enhancing properties in vivo. J Pharmacol Exp Ther 323:294–307

    Article  PubMed  CAS  Google Scholar 

  • Tinsley CJ, Fontaine-Palmer NS, Vincent M, Endean EP, Aggleton JP, Brown MW, Warburton EC (2011) Differing time dependencies of object recognition memory impairments produced by nicotinic and muscarinic cholinergic antagonism in perirhinal cortex. Learn Mem 18:484–492

    Article  PubMed  CAS  Google Scholar 

  • Toyohara J, Hashimoto K (2010) α7 nicotinic receptor agonists: potential therapeutic drugs for treatment of cognitive impairments in schizophrenia and Alzheimer's disease. Open Med Chem J 4:37–56

    PubMed  CAS  Google Scholar 

  • Tribollet E, Bertrand D, Marguerat A, Raggenbass M (2004) Comparative distribution of nicotinic receptor subtypes during development, adulthood and aging: an autoradiographic study in the rat brain. Neuroscience 124:405–420

    Article  PubMed  CAS  Google Scholar 

  • van der Staay FJ (2000) The study of behavioral dysfunctions: an evaluation of selected animal models. Dissertation, Graduate School of Behavioral and Cognitive Neurosciences (BCN). University Groningen, The Netherlands, (ISBN 90-367-1195-9), http://irs.ub.rug.nl/ppn/322034345

    Google Scholar 

  • van der Staay FJ (2006) Two months makes a difference in spatial orientation learning in very old FBNF1 rats. Physiol Behav 87:659–665

    Article  PubMed  Google Scholar 

  • van Kampen M, Selbach K, Schneider R, Schiegel E, Boess F, Schreiber R (2004) AR-R 17779 improves social recognition in rats by activation of nicotinic α7 receptors. Psychopharmacology 172:375–383

    Article  PubMed  Google Scholar 

  • Wallace TL, Callahan PM, Tehim A, Bertrand D, Tombaugh G, Wang S, Xie W, Rowe WB, Ong V, Graham E, Terry AV Jr, Rodefer JS, Herbert B, Murray M, Porter R, Santarelli L, Lowe DA (2011) RG3487, a novel nicotinic α7 receptor partial agonist, improves cognition and sensorimotor gating in rodents. J Pharmacol Exp Ther 336:242–253

    Article  PubMed  CAS  Google Scholar 

  • Walstab J, Rappold G, Niesler B (2010) 5-HT3 receptors: role in disease and target of drugs. Pharmacol Ther 128:146–169

    Article  PubMed  CAS  Google Scholar 

  • Whishaw IQ (1985) Formation of a place learning-set by the rat: a new paradigm for neurobehavioral studies. Physiol Behav 35:139–143

    Google Scholar 

  • Wishka DG, Walker DP, Yates KM, Reitz SC, Jia S, Myers JK, Olson KL, Jacobsen EJ, Wolfe ML, Groppi VE, Hanchar AJ, Thornburgh BA, Cortes-Burgos LA, Wong EHF, Staton BA, Raub TJ, Higdon NR, Wall TM, Hurst RS, Walters RR, Hoffmann WE, Hajos M, Franklin S, Carey G, Gold LH, Cook KK, Sands SB, Zhao SX, Soglia JR, Kalgutkar AS, Arneric SP, Rogers BN (2006) Discovery of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide, an agonist of the α7 nicotinic acetylcholine receptor, for the potential treatment of cognitive deficits in schizophrenia: synthesis and structure–activity relationship. J Med Chem 49:4425–4436

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, White NA, Soti FS, Kem WR, Machu TK (2006) N-terminal domains in mouse and human 5-hydroxytryptamine3A receptors confer partial agonist and antagonist properties to benzylidene analogs of anabaseine. J Pharmacol Exp Ther 317:1276–1284

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the assistance of P. Ammelung, D. Chodor, H. Dresen, K. Jentzsch, M. Keil, S. Kellermann, D. Klankers, and M. Kuster.

Conflict of interest

All authors were employed by Bayer Healthcare, Bayer Technology Services, or Bayer Central Research, respectively, at the time of the experiments. EnVivo Pharmaceuticals, Inc., has a world-wide license from BayerSchering Pharmaceuticals for various patents covering this and other compounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard König.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boess, F.G., de Vry, J., Erb, C. et al. Pharmacological and behavioral profile of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-6-chinolincarboxamide (EVP-5141), a novel α7 nicotinic acetylcholine receptor agonist/serotonin 5-HT3 receptor antagonist. Psychopharmacology 227, 1–17 (2013). https://doi.org/10.1007/s00213-012-2933-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2933-4

Keywords

Navigation