Advertisement

Psychopharmacology

, Volume 226, Issue 1, pp 13–24 | Cite as

Involvement of serotonin-mediated neurotransmission in the dorsal periaqueductal gray matter on cannabidiol chronic effects in panic-like responses in rats

  • Alline Cristina Campos
  • Vanessa de Paula Soares
  • Milene C Carvalho
  • Frederico Rogerio Ferreira
  • Maria Adrielle Vicente
  • Marcus Lira Brandão
  • Antonio Waldo Zuardi
  • Hélio ZangrossiJr
  • Francisco Silveira Guimarães
Original Investigation

Abstract

Rationale

Cannabidiol (CBD) is a non-psychotomimetic constituent of Cannabis sativa plant that promotes antianxiety and anti-panic effects in animal models after acute systemic or intra-dorsal periaqueductal gray (DPAG) administration. However, the effects of CBD repeated administration, and the possible mechanisms involved, in animal models of anxiety- and panic-related responses remain poorly understood.

Objective

The present study evaluates the role of the serotonergic neurotransmission within the DPAG in the modulation of escape responses of rats chronically treated with CBD.

Methods

Male Wistar rats received acute or repeated (5 mg/Kg/daily/21 days) administration of CBD and were submitted to the elevated T-maze (ETM). We also investigated if CBD effects on the ETM depend on facilitation of 5-HT1A-mediated neurotransmission in the DPAG. To this latter aim, we verified if these effects would be prevented by intra-DPAG injection of the 5-HT1A receptor antagonist WAY100635 (0.37 nmol/0.2 μL). Also, we verified, by in vivo microdialysis, if CBD chronic treatment increases serotonin (5-HT) release and, by quantitative polymerase chain reaction, if there are changes in 5HT-1A or 5HT-2C mRNA expression in DPAG.

Results

The results showed that repeated but not acute peripheral administration of CBD decreases escape responses in the ETM, suggesting a panicolytic effect. This treatment did not change 5HT-1A or 5-HT-2C receptor mRNA expression nor modify serotonin extracellular concentrations in the DPAG. CBD effects were prevented by DPAG injection of the 5-HT1A receptor antagonist.

Conclusions

Together, these findings suggest that repeated treatment with CBD induces anti-panic effects by acting on 5-HT1A receptors in DPAG.

Keywords

Panic disorder Cannabidiol Serotonin 5-HT1A receptors Dorsal periaqueductal gray 

Notes

Acknowledgments

This work was supported by CNPq and FAPESP grants. We thank Afonso Paulo Padovan and Eleni Tamburus for their technical support. ACC, VPS, and FRF were FAPESP fellowship recipients. MCC and MAV are CNPq fellowship recipients.

Conflict of interest

Authors do not report any conflict of interest.

References

  1. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, 4th ed., text revision. American Psychiatric, Washington, DCGoogle Scholar
  2. Bambico FR, Nguyen NT, Gobbi (2009) Decline in serotonergic firing activity and desensitization of 5-HT1A autoreceptors after chronic unpredictable stress. Eur Neuropsychopharmacol 19(3):215–228PubMedCrossRefGoogle Scholar
  3. Bambico FR, Nguyen NT, Katz N, Gobbi G (2010) Chronic exposure to cannabinoids during adolescence but not during adulthood impairs emotional behaviour and monoaminergic neurotransmission. Neurobiol Dis 37(3):641–655PubMedCrossRefGoogle Scholar
  4. Bisogno T, Hanus L, De Petrocellis L, Tchilibon S, Ponde DE, Brandi I et al (2001) Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol 134(4):845–852PubMedCrossRefGoogle Scholar
  5. Campos AC, Guimarães FS (2008) Involvement of 5HT1A receptors in the anxiolytic-like effects of cannabidiol injected into the dorsolateral periaqueductal gray of rats. Psychopharmacol (Berl) 199(2):223–230CrossRefGoogle Scholar
  6. Campos AC, Guimarães FS (2009) Evidence for a potential role for TRPV1 receptors in the dorsolateral periaqueductal gray in the attenuation of the anxiolytic effects of cannabinoids. Prog Neuropsychopharmacol Biol Psychiatry 33(8):1517–1521PubMedCrossRefGoogle Scholar
  7. Carrier EJ, Auchampach JA, Hillard CJ (2006) Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci USA 103(20):7895–7900PubMedCrossRefGoogle Scholar
  8. Casarotto PC, Gomes FV, Resstel LB, Guimarães FS (2010) Cannabidiol inhibitory effect on marble-burying behaviour: involvement of CB1 receptors. Behav Pharmacol 21(4):353–358PubMedCrossRefGoogle Scholar
  9. Cassano T, Gaetani S, Macheda T, Laconca L, Romano A, Morgese MG et al (2011) Evaluation of the emotional phenotype and serotonergic neurotransmission of fatty acid amide hydrolase-deficient mice. Psychopharmacol (Berl) 214(2):465–476CrossRefGoogle Scholar
  10. Castro ME, Diaz A, del Olmo E, Pazos A (2003) Chronic fluoxetine induces opposite changes in G protein coupling at pre and postsynaptic 5-HT1A receptors in rat brain. Neuropharmacology 44(1):93–101PubMedCrossRefGoogle Scholar
  11. Castro E, Díaz A, Rodriguez-Gaztelumendi A, Del Olmo E, Pazos A (2008) WAY100635 prevents the changes induced by fluoxetine upon the 5-HT1A receptor functionality. Neuropharmacology 55(8):1391–1396PubMedCrossRefGoogle Scholar
  12. de Paula Soares V, Zangrossi H Jr (2004) Involvement of 5-HT1A and 5-HT2 receptors of the dorsal periaqueductal gray in the regulation of the defensive behaviors generated by the elevated T-maze. Brain Res Bull 64(2):181–188PubMedCrossRefGoogle Scholar
  13. de Souza Silva MA, Mattern C, Topic B, Buddenberg TE, Huston JP (2009) Dopaminergic and serotonergic activity in neostriatum and nucleus accumbens enhanced by intranasal administration of testosterone. Eur Neuropsychopharmacol 19(1):53–63PubMedCrossRefGoogle Scholar
  14. Deiana S, Watanabe A, Yamasaki Y, Amada N, Arthur M, Fleming S, Woodcock H, Dorward P, Pigliacampo B, Close S, Platt B, Riedel G (2011) Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ(9)-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive-compulsive behaviour. Psychopharmacol (Berl) 219(3):859–873CrossRefGoogle Scholar
  15. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G et al (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258(5090):1946–1949PubMedCrossRefGoogle Scholar
  16. Elbatsh MM, Assareh N, Marsden CA, Kendall DA (2012) Anxiogenic-like effects of chronic cannabidiol administration in rats. Psychopharmacol (Berl) 221:239–247CrossRefGoogle Scholar
  17. Fusar-Poli P, Crippa JA, Bhattacharyya S, Borgwardt SJ, Allen P, Martin-Santos R et al (2009) Distinct effects of {delta}9-tetrahydrocannabinol and cannabidiol on neural activation during emotional processing. Arch Gen Psychiatry 66(1):95–105PubMedCrossRefGoogle Scholar
  18. Gomes FV, Resstel LB, Guimarães FS (2011) The anxiolytic-like effects of cannabidiol injected into the bed nucleus of the stria terminalis are mediated by 5-HT1A receptors. Psychopharmacol (Berl) 213(2–3):465–473CrossRefGoogle Scholar
  19. Graeff FG, Viana MB, Tomaz C (1993) The elevated T maze, a new experimental model of anxiety and memory: effect of diazepam. Braz J Med Biol Res 26(1):67–70PubMedGoogle Scholar
  20. Graeff FG, Netto CF, Zangrossi H Jr (1998) The elevated T-maze as an experimental model of anxiety. Neurosci Biobehav Rev 23(2):237–246PubMedCrossRefGoogle Scholar
  21. Guimarães FS, Chiaretti TM, Graeff FG, Zuardi AW (1990) Antianxiety effect of cannabidiol in the elevated plus-maze. Psychopharmacol (Berl) 100(4):558–559CrossRefGoogle Scholar
  22. Hershkowitz M, Szechtman H (1979) Pretreatment with delta 1-tetrahydrocannabinol and psychoactive drugs: effects on uptake of biogenic amines and on behavior. Eur J Pharmacol 59(3–4):267–276PubMedCrossRefGoogle Scholar
  23. Karrenbauer BD, Müller CP, Ho YJ, Spanagel R, Huston JP, Schwarting RK, Pawlak CR (2011) Time-dependent in-vivo effects of interleukin-2 on neurotransmitters in various cortices: relationships with depressive-related and anxiety-like behaviour. J Neuroimmunol 237(1–2):23–32PubMedCrossRefGoogle Scholar
  24. Kiser RS, Brown CA, Sanghera MK, German DC (1980) Dorsal raphe nucleus stimulation reduces centrally-elicited fearlike behavior. Brain Res 191(1):265–272PubMedCrossRefGoogle Scholar
  25. Mato S, Vidal R, Castro E, Díaz A, Pazos A, Valdizán EM (2010) Long-term fluoxetine treatment modulates cannabinoid type 1 receptor-mediated inhibition of adenylyl cyclase in the rat prefrontal cortex through 5-hydroxytryptamine 1A receptor-dependent mechanisms. Mol Pharmacol 77(3):424–434PubMedCrossRefGoogle Scholar
  26. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50(1):83–90PubMedCrossRefGoogle Scholar
  27. Mishima K, Hayakawa K, Abe K, Ikeda T, Egashira N, Iwasaki K et al (2005) Cannabidiol prevents cerebral infarction via a serotonergic 5-hydroxytryptamine1A receptor-dependent mechanism. Stroke 36(5):1077–1082PubMedCrossRefGoogle Scholar
  28. Moreira FA, Aguiar DC, Guimarães FS (2006) Anxiolytic-like effect of cannabidiol in the rat Vogel conflict test. Prog Neuropsychopharmacol Biol Psychiatry 30(8):1466–1471PubMedCrossRefGoogle Scholar
  29. Moreira FA, Aguiar DC, Campos AC, Lisboa SF, Terzian AL, Resstel LB, et al. (2009) Antiaversive effects of cannabinoids: is the periaqueductal gray involved? Neural Plast 625469Google Scholar
  30. Moulin-Sallanon M, Charnay Y, Ginovart N, Perret P, Lanfumey L, Hamon M et al (2009) Acute and chronic effects of citalopram on 5-HT1A receptor-labeling by [18F]MPPF and -coupling to receptors-G proteins. Synapse 63(2):106–116PubMedCrossRefGoogle Scholar
  31. Nogueira RL, Graeff FG (1995) Role of 5-HT receptor subtypes in the modulation of dorsal periaqueductal gray generated aversion. Pharmacol Biochem Behav 52(1):1–6PubMedCrossRefGoogle Scholar
  32. Onaivi ES, Green MR, Martin BR (1990) Pharmacological characterization of cannabinoids in the elevated plus maze. J Pharmacol Exp Ther 253(3):1002–1009PubMedGoogle Scholar
  33. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic, New YorkGoogle Scholar
  34. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. San Diego, AcademicGoogle Scholar
  35. Pinheiro SN, Del-Ben CM, Zangrossi H Jr, Graeff FG (2008) Anxiolytic and panicolytic effects of escitalopram in the elevated T-maze. J Psychopharmacol 22(2):132–137PubMedCrossRefGoogle Scholar
  36. Pobbe RL, Zangrossi H Jr (2005) 5-HT(1A) and 5-HT(2A) receptors in the rat dorsal periaqueductal gray mediate the antipanic-like effect induced by the stimulation of serotonergic neurons in the dorsal raphe nucleus. Psychopharmacol (Berl) 183(3):314–321CrossRefGoogle Scholar
  37. Poltronieri SC, Zangrossi H Jr, de Barros Viana M (2003) Antipanic-like effect of serotonin reuptake inhibitors in the elevated T-maze. Behav Brain Res 147(1–2):185–192PubMedCrossRefGoogle Scholar
  38. Resstel LB, Joca SR, Moreira FA, Corrêa FM, Guimarães FS (2006) Effects of cannabidiol and diazepam on behavioral and cardiovascular responses induced by contextual conditioned fear in rats. Behav Brain Res 172(2):294–298PubMedCrossRefGoogle Scholar
  39. Rock EM, Bolognini D, Limebeer CL, Cascio MG, Anavi-Goffer S, Fletcher PJ et al (2011) Cannabidiol, a non-psychotropic component of cannabis, attenuates vomiting and nausea-like behaviour via indirect agonism of 5-HT(1A) somatodendritic: Autoreceptors in the Dorsal Raphe Nucleus. Br J Pharmacol. doi: 10.1111/j.1476-5381.2011.01621.x
  40. Roy-Byrne PP, Craske MG, Stein MB (2006) Panic disorder. Lancet 368:1023–1032PubMedCrossRefGoogle Scholar
  41. Russo EB, Burnett A, Hall B, Parker KK (2005) Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem Res 30(8):1037–1043PubMedCrossRefGoogle Scholar
  42. Schenberg LC, Bittencourt AS, Sudré EC, Vargas LC (2001) Modeling panic attacks. Neurosci Biobehav Rev 25(7–8):647–659PubMedCrossRefGoogle Scholar
  43. Soares Vde P, Campos AC, Bortoli VC, Zangrossi H Jr, Guimarães FS, Zuardi AW (2010) Intra-dorsal periaqueductal gray administration of cannabidiol blocks panic-like response by activating 5-HT1A receptors. Behav Brain Res 213(2):225–229PubMedCrossRefGoogle Scholar
  44. Teixeira RC, Zangrossi H, Graeff FG (2000) Behavioral effects of acute and chronic imipramine in the elevated T-maze model of anxiety. Pharmacol Biochem Behav 65(4):571–576PubMedCrossRefGoogle Scholar
  45. Thomas A, Baillie GL, Phillips AM, Razdan RK, Ross RA, Pertwee RG (2007) Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br J Pharmacol 150(5):613–623PubMedCrossRefGoogle Scholar
  46. Viana MB, Tomaz C, Graeff FG (1994) The elevated T-maze: a new animal model of anxiety and memory. Pharmacol Biochem Behav 49(3):549–554PubMedCrossRefGoogle Scholar
  47. Zangrossi H Jr, Graeff FG (1997) Behavioral validation of the elevated T-maze, a new animal model of anxiety. Brain Res Bull 44(1):1–5PubMedCrossRefGoogle Scholar
  48. Zanoveli JM, Nogueira RL, Zangrossi H Jr (2003) Serotonin in the dorsal periaqueductal gray modulates inhibitory avoidance and one-way escape behaviors in the elevated T-maze. Eur J Pharmacol 473(2–3):153–161PubMedCrossRefGoogle Scholar
  49. Zanoveli JM, Nogueira RL, Zangrossi H Jr (2007) Enhanced reactivity of 5-HT1A receptors in the rat dorsal periaqueductal gray matter after chronic treatment with fluoxetine and sertraline: evidence from the elevated T-maze. Neuropharmacology 52(4):1188–1195PubMedCrossRefGoogle Scholar
  50. Zanoveli JM, Carvalho MC, Cunha JM, Brandão ML (2009) Extracellular serotonin level in the basolateral nucleus of the amygdala and dorsal periaqueductal gray under unconditioned and conditioned fear states: an in vivo microdialysis study. Brain Res 1294:106–115PubMedCrossRefGoogle Scholar
  51. Zanoveli JM, Pobbe RL, de Bortoli VC, Carvalho MC, Brandão ML, Zangrossi H Jr (2010) Facilitation of 5-HT(1A)-mediated neurotransmission in dorsal periaqueductal grey matter accounts for the panicolytic-like effect of chronic fluoxetine. Int J Neuropsychopharmacol 13(8):1079–1088PubMedCrossRefGoogle Scholar
  52. Zuardi AW, Shirakawa I, Finkelfarb E, Karniol IG (1982) Action of cannabidiol on the anxiety and other effects produced by delta 9-THC in normal subjects. Psychopharmacol (Berl) 76(3):245–250CrossRefGoogle Scholar
  53. Zuardi AW, Guimarães FS, Moreira AC (1993) Effect of cannabidiol on plasma prolactin, growth hormone and cortisol in human volunteers. Braz J Med Biol Res 26(2):213–217PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alline Cristina Campos
    • 1
    • 6
  • Vanessa de Paula Soares
    • 2
  • Milene C Carvalho
    • 3
    • 4
  • Frederico Rogerio Ferreira
    • 1
    • 6
  • Maria Adrielle Vicente
    • 1
  • Marcus Lira Brandão
    • 3
    • 4
  • Antonio Waldo Zuardi
    • 5
    • 6
  • Hélio ZangrossiJr
    • 1
  • Francisco Silveira Guimarães
    • 1
    • 6
  1. 1.Department of Pharmacology, School of Medicine of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  2. 2.Department of Biophysics and Pharmacology, Biosciences CenterFederal University of Rio Grande do NorteNatalBrazil
  3. 3.Laboratory of Psychobiology, School of Philosophy, Sciences and Letters of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  4. 4.Neuroscience and Behaviour Institute (INeC), Ribeirão Preto CampusUniversity of São PauloRibeirão PretoBrazil
  5. 5.Neuroscience and Behavioural Sciences, School of Medicine, Ribeirão Preto CampusUniversity of São PauloRibeirão PretoBrazil
  6. 6.Center for Interdisciplinary Research on Applied Neurosciences (NAPNA)University of São PauloRibeirão PretoBrazil

Personalised recommendations