Skip to main content
Log in

Long-term cognitive impairments induced by chronic cannabinoid exposure during adolescence in rats: a strain comparison

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

During cerebral development, adolescence is a critical phase in which the endocannabinoid system plays an important role in regulating various neurotransmitters. Moreover, evidence from both human and animal studies suggests that chronic cannabinoid exposure during this vulnerable period can induce persistent brain and behavioural alterations.

Objectives

The aim of this study was to compare the long-term cognitive consequences of chronic adolescence cannabinoid exposure between Lister Hooded rats and Wistar rats.

Methods

Rats of both strains were injected daily throughout their adolescent or adult periods with vehicle or with incremental doses of the synthetic cannabinoid CB1 receptor agonist CP55,940 (CP). Short-term and spatial working memories were assessed using the object recognition and object location, tasks respectively. For both tasks, the effect of a 30- or 120-min delay between the learning and the testing phase was investigated.

Results

In the object recognition task, adolescent CP exposure impaired short-term memory after both delays in both strains. In contrast, in the object location task, adolescent CP exposure impaired spatial working memory in the Wistar rats after a 30-min delay, whereas the Lister Hooded rats exhibited a similar effect only after a 120-min delay. In these tests, no long-term deleterious effects were found following adult CP exposure in either strain.

Conclusions

Our results confirm that adolescence is a critical period for the deleterious effects of cannabinoids on cognition and that these deleterious effects on spatial working memory are more strain-dependent than the effects observed on short-term memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aggleton JP, Keen S, Warburton EC, Bussey TJ (1997) Extensive cytotoxic lesions involving both the rhinal cortices and area TE impair recognition but spare spatial alternation in the rat. Brain Res Bull 43:279–287

    Article  PubMed  CAS  Google Scholar 

  • Aggleton JP, Kyd RJ, Bilkey DK (2004) When is the perirhinal cortex necessary for the performance of spatial memory tasks? Neurosci Biobehav Rev 28:611–624

    Article  PubMed  Google Scholar 

  • Akirav I, Maroun M (2006) Ventromedial prefrontal cortex is obligatory for consolidation and reconsolidation of object recognition memory. Cereb Cortex 16:1759–1765

    Article  PubMed  Google Scholar 

  • Andersen SL (2003) Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev 27:3–18

    Article  PubMed  Google Scholar 

  • Ashtari M, Avants B, Cyckowski L, Cervellione KL, Roofeh D, Cook P, Gee J, Sevy S, Kumra S (2011) Medial temporal structures and memory functions in adolescents with heavy cannabis use. J Psychiatr Res 45:1055–1066

    Article  PubMed  Google Scholar 

  • Ashton CH (2001) Pharmacology and effects of cannabis: a brief review. Br J Psychiatry 178:101–106

    Article  PubMed  CAS  Google Scholar 

  • Bussey TJ, Duck J, Muir JL, Aggleton JP (2000) Distinct patterns of behavioural impairments resulting from fornix transection or neurotoxic lesions of the perirhinal and postrhinal cortices in the rat. Behav Brain Res 111:187–202

    Article  PubMed  CAS  Google Scholar 

  • Carlezon WA Jr, Wise RA (1996) Rewarding actions of phencyclidine and related drugs in nucleus accumbens shell and frontal cortex. J Neurosci 16:3112–3122

    PubMed  CAS  Google Scholar 

  • Casey BJ, Giedd JN, Thomas KM (2000) Structural and functional brain development and its relation to cognitive development. Biol Psychol 54:241–257

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti A, Ekuta JE, Onaivi ES (1998) Neurobehavioral effects of anandamide and cannabinoid receptor gene expression in mice. Brain Res Bull 45:67–74

    Article  PubMed  CAS  Google Scholar 

  • Chaperon F, Soubrie P, Puech AJ, Thiebot MH (1998) Involvement of central cannabinoid (CB1) receptors in the establishment of place conditioning in rats. Psychopharmacology (Berl) 135:324–332

    Article  CAS  Google Scholar 

  • Chechik G, Meilijson I, Ruppin E (1999) Neuronal regulation: a mechanism for synaptic pruning during brain maturation. Neural Comput 11:2061–2080

    Article  PubMed  CAS  Google Scholar 

  • DeCoteau WE, Kesner RP (1998) Effects of hippocampal and parietal cortex lesions on the processing of multiple-object scenes. Behav Neurosci 112:68–82

    Article  PubMed  CAS  Google Scholar 

  • Deiana S, Fattore L, Spano MS, Cossu G, Porcu E, Fadda P, Fratta W (2007) Strain and schedule-dependent differences in the acquisition, maintenance and extinction of intravenous cannabinoid self-administration in rats. Neuropharmacology 52:646–654

    Article  PubMed  CAS  Google Scholar 

  • Ellgren M, Artmann A, Tkalych O, Gupta A, Hansen HS, Hansen SH, Devi LA, Hurd YL (2008) Dynamic changes of the endogenous cannabinoid and opioid mesocorticolimbic systems during adolescence: THC effects. Eur Neuropsychopharmacol 18:826–834

    Article  PubMed  CAS  Google Scholar 

  • Ennaceur A, Aggleton JP (1997) The effects of neurotoxic lesions of the perirhinal cortex combined to fornix transection on object recognition memory in the rat. Behav Brain Res 88:181–193

    Article  PubMed  CAS  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res 31:47–59

    Article  PubMed  CAS  Google Scholar 

  • Fadda P, Scherma M, Spano MS, Salis P, Melis V, Fattore L, Fratta W (2006) Cannabinoid self-administration increases dopamine release in the nucleus accumbens. Neuroreport 17:1629–1632

    Article  PubMed  CAS  Google Scholar 

  • Fehr KA, Kalant H, LeBlanc AE (1976) Residual learning deficit after heavy exposure to cannabis or alcohol in rats. Science 192:1249–1251

    Article  PubMed  CAS  Google Scholar 

  • Gardner EL (2002) Addictive potential of cannabinoids: the underlying neurobiology. Chem Phys Lipids 121:267–290

    Article  PubMed  CAS  Google Scholar 

  • Glass M, Dragunow M, Faull RL (1997) Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience 77:299–318

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez S, Cebeira M, Fernandez-Ruiz J (2005) Cannabinoid tolerance and dependence: a review of studies in laboratory animals. Pharmacol Biochem Behav 81:300–318

    Article  PubMed  CAS  Google Scholar 

  • Goodrich-Hunsaker NJ, Howard BP, Hunsaker MR, Kesner RP (2008) Human topological task adapted for rats: Spatial information processes of the parietal cortex. Neurobiol Learn Mem 90:389–394

    Article  PubMed  Google Scholar 

  • Harris HW, Nestler EJ (1996) Immunohistochemical studies of mesolimbic dopaminergic neurons in Fischer 344 and Lewis rats. Brain Res 706:1–12

    Article  PubMed  CAS  Google Scholar 

  • Harte LC, Dow-Edwards D (2010) Sexually dimorphic alterations in locomotion and reversal learning after adolescent tetrahydrocannabinol exposure in the rat. Neurotoxicol Teratol 32:515–524

    Article  PubMed  CAS  Google Scholar 

  • Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci USA 87:1932–1936

    Article  PubMed  CAS  Google Scholar 

  • Higuera-Matas A, Botreau F, Miguens M, Del Olmo N, Borcel E, Perez-Alvarez L, Garcia-Lecumberri C, Ambrosio E (2009) Chronic periadolescent cannabinoid treatment enhances adult hippocampal PSA-NCAM expression in male Wistar rats but only has marginal effects on anxiety, learning and memory. Pharmacol Biochem Behav 93:482–490

    Article  PubMed  CAS  Google Scholar 

  • Honda H, Shibuya T, Salafsky B (1990) Brain synaptosomal Ca2+ uptake: comparison of Sprague–Dawley, Wistar–Kyoto and spontaneously hypertensive rats. Comp Biochem Physiol B 95:555–558

    PubMed  CAS  Google Scholar 

  • Horne MR, Iordanova MD, Albasser MM, Aggleton JP, Honey RC, Pearce JM (2010) Lesions of the perirhinal cortex do not impair integration of visual and geometric information in rats. Behav Neurosci 124:311–320

    Article  PubMed  Google Scholar 

  • Hotte M, Naudon L, Jay TM (2005) Modulation of recognition and temporal order memory retrieval by dopamine D1 receptor in rats. Neurobiol Learn Mem 84:85–92

    Article  PubMed  CAS  Google Scholar 

  • Hotte M, Thuault S, Dineley KT, Hemmings HC Jr, Nairn AC, Jay TM (2007) Phosphorylation of CREB and DARPP-32 during late LTP at hippocampal to prefrontal cortex synapses in vivo. Synapse 61:24–28

    Article  PubMed  CAS  Google Scholar 

  • Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ (2000) Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J Neurosci 20:7489–7495

    PubMed  CAS  Google Scholar 

  • Jentsch JD, Verrico CD, Le D, Roth RH (1998) Repeated exposure to delta 9-tetrahydrocannabinol reduces prefrontal cortical dopamine metabolism in the rat. Neurosci Lett 246:169–172

    Article  PubMed  CAS  Google Scholar 

  • Lepore M, Vorel SR, Lowinson J, Gardner EL (1995) Conditioned place preference induced by delta 9-tetrahydrocannabinol: comparison with cocaine, morphine, and food reward. Life Sci 56:2073–2080

    Article  PubMed  CAS  Google Scholar 

  • Manahan-Vaughan D, Schwegler H (2011) Strain-dependent variations in spatial learning and in hippocampal synaptic plasticity in the dentate gyrus of freely behaving rats. Front Behav Neurosci 5:7

    Article  PubMed  Google Scholar 

  • McGregor IS, Issakidis CN, Prior G (1996) Aversive effects of the synthetic cannabinoid CP 55,940 in rats. Pharmacol Biochem Behav 53:657–664

    Article  PubMed  CAS  Google Scholar 

  • Nelson AJ, Cooper MT, Thur KE, Marsden CA, Cassaday HJ (2011) The effect of catecholaminergic depletion within the prelimbic and infralimbic medial prefrontal cortex on recognition memory for recency, location, and objects. Behav Neurosci 125:396–403

    Article  PubMed  CAS  Google Scholar 

  • Nelson AJ, Thur KE, Marsden CA, Cassaday HJ (2010) Dissociable roles of dopamine within the core and medial shell of the nucleus accumbens in memory for objects and place. Behav Neurosci 124:789–799

    Article  PubMed  Google Scholar 

  • O’Shea M, McGregor IS, Mallet PE (2006) Repeated cannabinoid exposure during perinatal, adolescent or early adult ages produces similar longlasting deficits in object recognition and reduced social interaction in rats. J Psychopharmacol 20:611–621

    Article  PubMed  Google Scholar 

  • O’Shea M, Singh ME, McGregor IS, Mallet PE (2004) Chronic cannabinoid exposure produces lasting memory impairment and increased anxiety in adolescent but not adult rats. J Psychopharmacol 18:502–508

    Article  PubMed  Google Scholar 

  • Ortiz S, Oliva JM, Perez-Rial S, Palomo T, Manzanares J (2004) Differences in basal cannabinoid CB1 receptor function in selective brain areas and vulnerability to voluntary alcohol consumption in Fawn Hooded and Wistar rats. Alcohol Alcohol 39:297–302

    Article  PubMed  CAS  Google Scholar 

  • Pandolfo P, Vendruscolo LF, Sordi R, Takahashi RN (2009) Cannabinoid-induced conditioned place preference in the spontaneously hypertensive rat-an animal model of attention deficit hyperactivity disorder. Psychopharmacology (Berl) 205:319–326

    Article  CAS  Google Scholar 

  • Paus T, Zijdenbos A, Worsley K, Collins DL, Blumenthal J, Giedd JN, Rapoport JL, Evans AC (1999) Structural maturation of neural pathways in children and adolescents: in vivo study. Science 283:1908–1911

    Article  PubMed  CAS  Google Scholar 

  • Pope HG Jr, Gruber AJ, Yurgelun-Todd D (2001) Residual neuropsychologic effects of cannabis. Curr Psychiatry Rep 3:507–512

    Article  PubMed  Google Scholar 

  • Prior H, Schwegler H, Ducker G (1997) Dissociation of spatial reference memory, spatial working memory, and hippocampal mossy fiber distribution in two rat strains differing in emotionality. Behav Brain Res 87:183–194

    Article  PubMed  CAS  Google Scholar 

  • Quinn HR, Matsumoto I, Callaghan PD, Long LE, Arnold JC, Gunasekaran N, Thompson MR, Dawson B, Mallet PE, Kashem MA, Matsuda-Matsumoto H, Iwazaki T, McGregor IS (2008) Adolescent rats find repeated Delta(9)-THC less aversive than adult rats but display greater residual cognitive deficits and changes in hippocampal protein expression following exposure. Neuropsychopharmacology 33:1113–1126

    Article  PubMed  Google Scholar 

  • Rodriguez de Fonseca F, Ramos JA, Bonnin A, Fernandez-Ruiz JJ (1993) Presence of cannabinoid binding sites in the brain from early postnatal ages. Neuroreport 4:135–138

    Article  PubMed  CAS  Google Scholar 

  • Rubino T, Realini N, Braida D, Guidi S, Capurro V, Vigano D, Guidali C, Pinter M, Sala M, Bartesaghi R, Parolaro D (2009) Changes in hippocampal morphology and neuroplasticity induced by adolescent THC treatment are associated with cognitive impairment in adulthood. Hippocampus 19:763–772

    Article  PubMed  CAS  Google Scholar 

  • Schneider M, Koch M (2003) Chronic pubertal, but not adult chronic cannabinoid treatment impairs sensorimotor gating, recognition memory, and the performance in a progressive ratio task in adult rats. Neuropsychopharmacology 28:1760–1769

    Article  PubMed  CAS  Google Scholar 

  • Schneider M, Koch M (2005) Deficient social and play behavior in juvenile and adult rats after neonatal cortical lesion: effects of chronic pubertal cannabinoid treatment. Neuropsychopharmacology 30:944–957

    Article  PubMed  CAS  Google Scholar 

  • Schwartz RH, Gruenewald PJ, Klitzner M, Fedio P (1989) Short-term memory impairment in cannabis-dependent adolescents. Am J Dis Child 143:1214–1219

    PubMed  CAS  Google Scholar 

  • Solowij N, Battisti R (2008) The chronic effects of cannabis on memory in humans: a review. Curr Drug Abuse Rev 1:81–98

    Article  PubMed  Google Scholar 

  • Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24:417–463

    Article  PubMed  CAS  Google Scholar 

  • Stiglick A, Kalant H (1982) Learning impairment in the radial-arm maze following prolonged cannabis treatment in rats. Psychopharmacology (Berl) 77:117–123

    Article  CAS  Google Scholar 

  • Strohl KP, Thomas AJ (1997) Neonatal conditioning for adult respiratory behavior. Respir Physiol 110:269–275

    Article  PubMed  CAS  Google Scholar 

  • Tarazi FI, Tomasini EC, Baldessarini RJ (1998) Postnatal development of dopamine and serotonin transporters in rat caudate-putamen and nucleus accumbens septi. Neurosci Lett 254:21–24

    Article  PubMed  CAS  Google Scholar 

  • Tarazi FI, Tomasini EC, Baldessarini RJ (1999) Postnatal development of dopamine D1-like receptors in rat cortical and striatolimbic brain regions: an autoradiographic study. Dev Neurosci 21:43–49

    Article  PubMed  CAS  Google Scholar 

  • Tsou K, Brown S, Sanudo-Pena MC, Mackie K, Walker JM (1998) Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83:393–411

    Article  PubMed  CAS  Google Scholar 

  • Vinod KY, Yalamanchili R, Thanos PK, Vadasz C, Cooper TB, Volkow ND, Hungund BL (2008) Genetic and pharmacological manipulations of the CB(1) receptor alter ethanol preference and dependence in ethanol preferring and nonpreferring mice. Synapse 62:574–581

    Article  PubMed  CAS  Google Scholar 

  • Warburton EC, Baird AL, Morgan A, Muir JL, Aggleton JP (2000) Disconnecting hippocampal projections to the anterior thalamus produces deficits on tests of spatial memory in rats. Eur J Neurosci 12:1714–1726

    Article  PubMed  CAS  Google Scholar 

  • Warburton EC, Brown MW (2009) Findings from animals concerning when interactions between perirhinal cortex, hippocampus and medial prefrontal cortex are necessary for recognition memory. Neuropsychologia 48:2262–2272

    Article  PubMed  Google Scholar 

  • Yamaguchi K, Kandel DB (1984) Patterns of drug use from adolescence to young adulthood: III. Predictors of progression. Am J Public Health 74:673–681

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by funds from the French National Research Agency (ANR-06-NEURO-044-01). We thank Julie Cognet for her technical assistance.

Conflict of interest

All authors declare that they have no conflicts of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwenaëlle Le Pen.

Additional information

Thérèse M. Jay and Gwenaëlle Le Pen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renard, J., Krebs, MO., Jay, T.M. et al. Long-term cognitive impairments induced by chronic cannabinoid exposure during adolescence in rats: a strain comparison. Psychopharmacology 225, 781–790 (2013). https://doi.org/10.1007/s00213-012-2865-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2865-z

Keywords

Navigation