Skip to main content
Log in

Persistent effects of prior chronic exposure to corticosterone on reward-related learning and motivation in rodents

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

Repeated or prolonged exposure to stress has profound effects on a wide spectrum of behavioral and neurobiological processes and has been associated with the pathophysiology of depression. The multifaceted nature of this disorder includes despair, anhedonia, diminished motivation, and disrupted cognition, and it has been proposed that depression is also associated with reduced reward-motivated learning. We have previously reported that prior chronic corticosterone exposure to mice produces a lasting depressive-like state that can be reversed by chronic antidepressant treatment.

Methods

In the present study, we tested the effects of prior chronic exposure to corticosterone (50 μg/ml) administered to rats or to mice in drinking water for 14 days followed by dose-tapering over 9 days.

Results

The exposure to corticosterone produced lasting deficits in the acquisition of reward-related learning tested on a food-motivated instrumental task conducted 10–20 days after the last day of full dose corticosterone exposure. Rats exposed to corticosterone also displayed reduced responding on a progressive ratio schedule of reinforcement when tested on day 21 after exposure. Amitriptyline (200 mg/ml in drinking water) exposure for 14 days to mice produced the opposite effect, enhancing food-motivated instrumental acquisition and performance. Repeated treatment with amitriptyline (5 mg/kg, intraperitoneally; bid) subsequent to corticosterone exposure also prevented the corticosterone-induced deficits in rats.

Conclusions

These results are consistent with aberrant reward-related learning and motivational processes in depressive states and provide new evidence that stress-induced neuroadaptive alterations in cortico–limbic–striatal brain circuits involved in learning and motivation may play a critical role in aspects of mood disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baldwin AE, Sadeghian K, Kelley AE (2002) Appetitive instrumental learning requires coincident activation of NMDA and dopamine D1 receptors within the medial prefrontal cortex. J Neurosci 22:1063–1071

    PubMed  CAS  Google Scholar 

  • Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311(5762):864–868

    Article  PubMed  CAS  Google Scholar 

  • Corbit LH, Balleine BW (2003) The role of prelimbic cortex in instrumental conditioning. Behav Brain Res 146:145–157

    Article  PubMed  Google Scholar 

  • Dias-Ferreira E, Sousa JC, Melo I, Morgado P, Mesquita AR, Cerqueira JJ, Costa RM, Sousa N (2009) Chronic stress causes frontostriatal reorganization and affects decision-making. Science 325:621–625

    Article  PubMed  CAS  Google Scholar 

  • Gorgulu Y, Caliyurt O (2009) Rapid antidepressant effects of sleep deprivation therapy correlates with serum BDNF changes in major depression. Brain Res Bull 80:158–62

    Google Scholar 

  • Gotlib IH, Joormann J (2010) Cognition and depression: current status and future directions. Annu Rev Clin Psychol 6:285–312

    Article  PubMed  Google Scholar 

  • Gourley SL & Taylor JR (2009) Recapitulation and reversal of a persistent depression-like syndrome in rodents. Curr Protoc Neurosci, Chapter 9, Unit 9.32

  • Gourley SL, Kiraly DD, Howell JL, Olausson P, Taylor JR (2008a) Acute hippocampal brain-derived neurotrophic factor restores motivational and forced swim performance after corticosterone. Biol Psychiatry 64:884–890

    Article  PubMed  CAS  Google Scholar 

  • Gourley SL, Wu FJ, Kiraly DD, Ploski JE, Kedves AT, Duman RS, Taylor JR (2008b) Regionally specific regulation of ERK MAP kinase in a model of antidepressant-sensitive chronic depression. Biol Psychiatry 63:353–359

    Article  PubMed  CAS  Google Scholar 

  • Gourley SL, Wu FJ, Taylor JR (2008c) Corticosterone regulates pERK1/2 map kinase in a chronic depression model. Ann N Y Acad Sci 1148:509–514

    Article  PubMed  CAS  Google Scholar 

  • Gourley SL, Kedves AT, Olausson P, Taylor JR (2009) A history of corticosterone exposure regulates fear extinction and cortical NR2B, GluR2/3, and BDNF. Neuropsychopharmacology 34:707–716

    Article  PubMed  CAS  Google Scholar 

  • Kendler KS, Karkowski LM, Prescott CA (1999) Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 156:837–841

    PubMed  CAS  Google Scholar 

  • Krishnan V, Nestler EJ (2010) Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry 167(11):1305–1320

    Article  PubMed  Google Scholar 

  • Liu RJ, Aghajanian GK (2008) Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy. Proc Natl Acad Sci U S A 105:359–364

    Article  PubMed  CAS  Google Scholar 

  • Matthews K, Robbins TW (2003) Early experience as a determinant of adult behavioural responses to reward: the effects of repeated maternal separation in the rat. Neurosci Biobehav Rev 27:45–55

    Article  PubMed  Google Scholar 

  • Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15:7539–7547

    PubMed  CAS  Google Scholar 

  • Nibuya M, Nestler EJ, Duman RS (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 16:2365–2372

    PubMed  CAS  Google Scholar 

  • Olausson P, Jentsch JD, Tronson N, Neve RL, Nestler EJ, Taylor JR (2006) DeltaFosB in the nucleus accumbens regulates food-reinforced instrumental behavior and motivation. J Neurosci 26:9196–9204

    Article  PubMed  CAS  Google Scholar 

  • Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T, Hof PR, McEwen BS, Morrison JH (2004) Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125:1–6

    Article  PubMed  CAS  Google Scholar 

  • Radley JJ, Rocher AB, Miller M, Janssen WG, Liston C, Hof PR, McEwen BS, Morrison JH (2006) Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex 16:313–320

    Article  PubMed  Google Scholar 

  • Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22:3251–3261

    PubMed  CAS  Google Scholar 

  • Smith MA, Makino S, Kvetnansky R, Post RM (1995a) Effects of stress on neurotrophic factor expression in the rat brain. Ann N Y Acad Sci 771:234–239

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Makino S, Kvetnansky R, Post RM (1995b) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15:1768–1777

    PubMed  CAS  Google Scholar 

  • Smith-Roe SL, Kelley AE (2000) Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning. J Neurosci 20:7737–7742

    PubMed  CAS  Google Scholar 

  • Southwick SM, Vythilingam M, Charney DS (2005) The psychobiology of depression and resilience to stress: implications for prevention and treatment. Annu Rev Clin Psychol 1:255–291

    Article  PubMed  Google Scholar 

  • Wallace DL, Han MH, Graham DL, Green TA, Vialou V, Iñiguez SD, Cao JL, Kirk A, Chakravarty S, Kumar A, Krishnan V, Neve RL, Cooper DC, Bolaños CA, Barrot M, McClung CA, Nestler EJ (2009) CREB regulation of nucleus accumbens excitability mediates social isolation-induced behavioral deficits. Nat Neurosci 12(2):200–209

    Article  PubMed  CAS  Google Scholar 

  • Wellman CL (2001) Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J Neurobiol 49:245–253

    Article  PubMed  CAS  Google Scholar 

  • Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 134:319–329

    Article  CAS  Google Scholar 

  • Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52:90–110

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the valuable technical assistance of Dr. Dilja Krueger, Ms. Victoria Stewart, and Ms. Jessica Johnson. The study was supported by PHS grants AA017537, MH066172, and NARSAD Young Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Olausson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olausson, P., Kiraly, D.D., Gourley, S.L. et al. Persistent effects of prior chronic exposure to corticosterone on reward-related learning and motivation in rodents. Psychopharmacology 225, 569–577 (2013). https://doi.org/10.1007/s00213-012-2844-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2844-4

Keywords

Navigation