Skip to main content

Advertisement

Log in

Galantamine increases hippocampal insulin-like growth factor 2 expression via α7 nicotinic acetylcholine receptors in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale and objective

Galantamine, a drug for the treatment of Alzheimer’s disease, has neuroprotection in several experimental models and stimulates adult neurogenesis in the rodent brain, but the exact mechanism remains unclear. This study examined whether galantamine affects the expression of neurotrophic/growth factors in the mouse hippocampus and prefrontal cortex.

Methods

Nine-week-old male ddY mice were used. The mRNA levels of neurotrophic/growth factors were analyzed by a real-time quantitative PCR. The protein levels of insulin-like growth factor 2 (IGF2) were analyzed by Western blotting.

Results

Acute administration of galantamine (0.3–3 mg/kg, i.p.) increased IGF2 mRNA levels in the hippocampus, but not in the prefrontal cortex, in time- and dose-dependent manner. Galantamine (3 mg/kg, i.p.) caused a transient increase in fibroblast growth factor 2 mRNA levels and a decrease in brain-derived neurotrophic factor mRNA levels in the hippocampus, while it did not affect the mRNA levels of other neurotrophic/growth factors. The galantamine-induced increase in the hippocampal IGF2 mRNA levels was blocked by mecamylamine, a nonselective nicotinic acetylcholine (ACh) receptor (nAChR) antagonist, and methyllycaconitine, a selective α7 nAChR antagonist, but not by telenzepine, a preferential M1 muscarinic ACh receptor antagonist. Moreover, the selective α7 nAChR agonist PHA-543613 increased the IGF2 mRNA levels, while donepezil, an acetylcholinesterase inhibitor, did not. Galantamine also increased hippocampal IGF2 protein, which was blocked by methyllycaconitine.

Conclusions

These findings suggest that galantamine increases hippocampal IGF2 levels via α7 nAChR activation in mice and imply that the effect may contribute to its neuroprotection or neurogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

ANOVA:

Analysis of variance

BDNF:

Brain-derived neurotrophic factor

CREB:

cAMP response element binding protein

FGF2:

Fibroblast growth factor 2

IGF:

Insulin-like growth factor

mAChR:

Muscarinic acetylcholine receptor

nAChR:

Nicotinic acetylcholine receptor

NGF:

Nerve growth factor

SEM:

Standard error of the mean

VEGF:

Vascular endothelial growth factor

References

  • Agis-Balboa RC, Arcos-Diaz D, Wittnam J, Govindarajan N, Blom K, Burkhardt S, Haladyniak U, Agbemenyah HY, Zovoilis A, Salinas-Riester G, Opitz L, Sananbenesi F, Fischer A (2011) A hippocampal insulin-growth factor 2 pathway regulates the extinction of fear memories. EMBO J 30:4071–4083

    Article  PubMed  CAS  Google Scholar 

  • Ago Y, Koda K, Takuma K, Matsuda T (2011) Pharmacological aspects of the acetylcholinesterase inhibitor galantamine. J Pharmacol Sci 116:6–17

    Article  PubMed  CAS  Google Scholar 

  • Ago Y, Tanaka T, Kita Y, Tokumoto H, Takuma K, Matsuda T (2012) Lithium attenuates methamphetamine-induced hyperlocomotion and behavioral sensitization via modulation of prefrontal monoamine release. Neuropharmacology 62:1634–1639

    Article  PubMed  CAS  Google Scholar 

  • Anderson MF, Aberg MA, Nilsson M, Eriksson PS (2002) Insulin-like growth factor-I and neurogenesis in the adult mammalian brain. Brain Res Dev Brain Res 134:115–122

    Article  PubMed  CAS  Google Scholar 

  • Autio H, Mätlik K, Rantamäki T, Lindemann L, Hoener MC, Chao M, Arumäe U, Castrén E (2011) Acetylcholinesterase inhibitors rapidly activate Trk neurotrophin receptors in the mouse hippocampus. Neuropharmacology 61:1291–1296

    Article  PubMed  CAS  Google Scholar 

  • Belluardo N, Blum M, Mudo G, Andbjer B, Fuxe K (1998) Acute intermittent nicotine treatment produces regional increases of basic fibroblast growth factor messenger RNA and protein in the tel- and diencephalon of the rat. Neuroscience 83:723–740

    Article  PubMed  CAS  Google Scholar 

  • Belluardo N, Mudò G, Blum M, Cheng Q, Caniglia G, Dell’Albani P, Fuxe K (1999) The nicotinic acetylcholine receptor agonist (±)-epibatidine increases FGF-2 mRNA and protein levels in the rat brain. Brain Res Mol Brain Res 74:98–110

    Article  PubMed  CAS  Google Scholar 

  • Bracko O, Singer T, Aigner S, Knobloch M, Winner B, Ray J, Clemenson GD Jr, Suh H, Couillard-Despres S, Aigner L, Gage FH, Jessberger S (2012) Gene expression profiling of neural stem cells and their neuronal progeny reveals IGF2 as a regulator of adult hippocampal neurogenesis. J Neurosci 32:3376–3387

    Article  PubMed  CAS  Google Scholar 

  • Brown J, Jones EY, Forbes BE (2009) Keeping IGF-II under control: lessons from the IGF-II–IGF2R crystal structure. Trends Biochem Sci 34:612–619

    Article  PubMed  CAS  Google Scholar 

  • Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D, During MJ (2004) VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet 36:827–835

    Article  PubMed  CAS  Google Scholar 

  • Chao W, D’Amore PA (2008) IGF2: epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev 19:111–120

    Article  PubMed  CAS  Google Scholar 

  • Chen DY, Stern SA, Garcia-Osta A, Saunier-Rebori B, Pollonini G, Bambah-Mukku D, Blitzer RD, Alberini CM (2011) A critical role for IGF-II in memory consolidation and enhancement. Nature 469:491–497

    Article  PubMed  CAS  Google Scholar 

  • Constância M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, Stewart F, Kelsey G, Fowden A, Sibley C, Reik W (2002) Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417:945–948

    Article  PubMed  Google Scholar 

  • Csernansky JG, Martin M, Shah R, Bertchume A, Colvin J, Dong H (2005) Cholinesterase inhibitors ameliorate behavioral deficits induced by MK-801 in mice. Neuropsychopharmacology 30:2135–2143

    Article  PubMed  CAS  Google Scholar 

  • Dajas-Bailador FA, Heimala K, Wonnacott S (2003) The allosteric potentiation of nicotinic acetylcholine receptors by galantamine is transduced into cellular responses in neurons: Ca2+ signals and neurotransmitter release. Mol Pharmacol 64:1217–1226

    Article  PubMed  CAS  Google Scholar 

  • Di Cara B, Panayi F, Gobert A, Dekeyne A, Sicard D, De Groote L, Millan MJ (2007) Activation of dopamine D1 receptors enhances cholinergic transmission and social cognition: a parallel dialysis and behavioural study in rats. Int J Neuropsychopharmacol 10:383–399

    Article  PubMed  Google Scholar 

  • Frielingsdorf H, Simpson DR, Thal LJ, Pizzo DP (2007) Nerve growth factor promotes survival of new neurons in the adult hippocampus. Neurobiol Dis 26:47–55

    Article  PubMed  CAS  Google Scholar 

  • Gicquel C, Le Bouc Y (2006) Hormonal regulation of fetal growth. Horm Res 65(Suppl 3):28–33

    Article  PubMed  CAS  Google Scholar 

  • Gil-Bea FJ, Solas M, Mateos L, Winblad B, Ramírez MJ, Cedazo-Mínguez A (2011) Cholinergic hypofunction impairs memory acquisition possibly through hippocampal Arc and BDNF downregulation. Hippocampus 21:999–1009

    PubMed  CAS  Google Scholar 

  • Jensen AA, Mikkelsen I, Frølund B, Bräuner-Osborne EF, Krogsgaard-Larsen P (2003) Carbamoylcholine homologs: novel and potent agonists at neuronal nicotinic acetylcholine receptors. Mol Pharmacol 64:865–875

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Xie L, Mao XO, Greenberg DA (2006) Alzheimer’s disease drugs promote neurogenesis. Brain Res 1085:183–188

    Article  PubMed  CAS  Google Scholar 

  • Kataoka S, Takuma K, Hara Y, Maeda Y, Ago Y, Matsuda T (2011) Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid. Int J Neuropsychopharmacol Nov. 18:1–13 PMID: 22093185

    Google Scholar 

  • Kenny PJ, File SE, Rattray M (2000) Acute nicotine decreases, and chronic nicotine increases the expression of brain-derived neurotrophic factor mRNA in rat hippocampus. Brain Res Mol Brain Res 85:234–238

    Article  PubMed  CAS  Google Scholar 

  • Kihara T, Sawada H, Nakamizo T, Kanki R, Yamashita H, Maelicke A, Shimohama S (2004) Galantamine modulates nicotinic receptor and blocks Aβ-enhanced glutamate toxicity. Biochem Biophys Res Commun 325:976–982

    Article  PubMed  CAS  Google Scholar 

  • Koda K, Ago Y, Kawasaki T, Hashimoto H, Baba A, Matsuda T (2008) Galantamine and donepezil differently affect isolation rearing-induced deficits of prepulse inhibition in mice. Psychopharmacology Berl 196:293–301

    Google Scholar 

  • Koda K, Ago Y, Yano K, Nishimura M, Kobayashi H, Fukada A, Takuma K, Matsuda T (2011) Involvement of decreased muscarinic receptor function in prepulse inhibition deficits in mice reared in social isolation. Br J Pharmacol 162:763–772

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Duan W, Mattson MP (2002) Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 82:1367–1375

    Article  PubMed  CAS  Google Scholar 

  • Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, Lun M, Maynard T, Gonzalez D, Kim S, Ye P, D’Ercole AJ, Wong ET, LaMantia AS, Walsh CA (2011) The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69:893–905

    Article  PubMed  CAS  Google Scholar 

  • Llorens-Martín M, Torres-Alemán I, Trejo JL (2009) Mechanisms mediating brain plasticity: IGF1 and adult hippocampal neurogenesis. Neuroscientist 15:134–148

    Article  PubMed  Google Scholar 

  • Maelicke A, Schrattenholz A, Samochocki M, Radina M, Albuquerque EX (2000) Allosterically potentiating ligands of nicotinic receptors as a treatment strategy for Alzheimer’s disease. Behav Brain Res 113:199–206

    Article  PubMed  CAS  Google Scholar 

  • Maelicke A, Samochocki M, Jostock R, Fehrenbacher A, Ludwig J, Albuquerque EX, Zerlin M (2001) Allosteric sensitization of nicotinic receptors by galantamine, a new treatment strategy for Alzheimer’s disease. Biol Psychiatry 49:279–288

    Article  PubMed  CAS  Google Scholar 

  • Mudo G, Belluardo N, Fuxe K (2007) Nicotinic receptor agonists as neuroprotective/neurotrophic drugs. Progress in molecular mechanisms. J Neural Transm 114:135–147

    Article  PubMed  CAS  Google Scholar 

  • Noda Y, Mouri A, Ando Y, Waki Y, Yamada SN, Yoshimi A, Yamada K, Ozaki N, Wang D, Nabeshima T (2010) Galantamine ameliorates the impairment of recognition memory in mice repeatedly treated with methamphetamine: involvement of allosteric potentiation of nicotinic acetylcholine receptors and dopaminergic-ERK1/2 systems. Int J Neuropsychopharmacol 13:1343–1354

    Article  PubMed  CAS  Google Scholar 

  • Rossi C, Angelucci A, Costantin L, Braschi C, Mazzantini M, Babbini F, Fabbri ME, Tessarollo L, Maffei L, Berardi N, Caleo M (2006) Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci 24:1850–1856

    Article  PubMed  Google Scholar 

  • Samochocki M, Höffle A, Fehrenbacher A, Jostock R, Ludwig J, Christner C, Radina M, Zerlin M, Ullmer C, Pereira EF, Lübbert H, Albuquerque EX, Maelicke A (2003) Galantamine is an allosterically potentiating ligand of neuronal nicotinic but not of muscarinic acetylcholine receptors. J Pharmacol Exp Ther 305:1024–1036

    Article  PubMed  CAS  Google Scholar 

  • Santos MD, Alkondon M, Pereira EF, Aracava Y, Eisenberg HM, Maelicke A, Albuquerque EX (2002) The nicotinic allosteric potentiating ligand galantamine facilitates synaptic transmission in the mammalian central nervous system. Mol Pharmacol 61:1222–1234

    Article  PubMed  CAS  Google Scholar 

  • Schänzer A, Wachs FP, Wilhelm D, Acker T, Cooper-Kuhn C, Beck H, Winkler J, Aigner L, Plate KH, Kuhn HG (2004) Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol 14:237–248

    Article  PubMed  Google Scholar 

  • Schilström B, Ivanov VB, Wiker C, Svensson TH (2007) Galantamine enhances dopaminergic neurotransmission in vivo via allosteric potentiation of nicotinic acetylcholine receptors. Neuropsychopharmacology 32:43–53

    Article  PubMed  Google Scholar 

  • Schrattenholz A, Pereira EF, Roth U, Weber KH, Albuquerque EX, Maelicke A (1996) Agonist responses of neuronal nicotinic acetylcholine receptors are potentiated by a novel class of allosterically acting ligands. Mol Pharmacol 49:1–6

    PubMed  CAS  Google Scholar 

  • Sharp BM, Yatsula M, Fu Y (2004) Effects of galantamine, a nicotinic allosteric potentiating ligand, on nicotine-induced catecholamine release in hippocampus and nucleus accumbens of rats. J Pharmacol Exp Ther 309:1116–1123

    Article  PubMed  CAS  Google Scholar 

  • Sobrado M, Roda JM, López MG, Egea J, García AG (2004) Galantamine and memantine produce different degrees of neuroprotection in rat hippocampal slices subjected to oxygen-glucose deprivation. Neurosci Lett 365:132–136

    Article  PubMed  CAS  Google Scholar 

  • Takada-Takatori Y, Kume T, Sugimoto M, Katsuki H, Sugimoto H, Akaike A (2006) Acetylcholinesterase inhibitors used in treatment of Alzheimer’s disease prevent glutamate neurotoxicity via nicotinic acetylcholine receptors and phosphatidylinositol 3-kinase cascade. Neuropharmacology 51:474–486

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Yagi T, Shimakoshi R, Azuma K, Nanba T, Ogo H, Tamura A, Asanuma M (2009) Effects of galantamine on L-NAME-induced behavioral impairment in Y-maze task in mice. Neurosci Lett 462:235–238

    Article  PubMed  CAS  Google Scholar 

  • Villarroya M, García AG, Marco-Contelles J, López MG (2007) An update on the pharmacology of galantamine. Expert Opin Investig Drugs 16:1987–1998

    Article  PubMed  CAS  Google Scholar 

  • Wadenberg ML, Fjällström AK, Federley M, Persson P, Stenqvist P (2011) Effects of adjunct galantamine to risperidone, or haloperidol, in animal models of antipsychotic activity and extrapyramidal side-effect liability: involvement of the cholinergic muscarinic receptor. Int J Neuropsychopharmacol 14:644–654

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Noda Y, Zhou Y, Mouri A, Mizoguchi H, Nitta A, Chen W, Nabeshima T (2007) The allosteric potentiation of nicotinic acetylcholine receptors by galantamine ameliorates the cognitive dysfunction in beta amyloid25–35 i.c.v.-injected mice: involvement of dopaminergic systems. Neuropsychopharmacology 32:1261–1271

    Article  PubMed  CAS  Google Scholar 

  • Wishka DG, Walker DP, Yates KM, Reitz SC, Jia S, Myers JK, Olson KL, Jacobsen EJ, Wolfe ML, Groppi VE, Hanchar AJ, Thornburgh BA, Cortes-Burgos LA, Wong EH, Staton BA, Raub TJ, Higdon NR, Wall TM, Hurst RS, Walters RR, Hoffmann WE, Hajos M, Franklin S, Carey G, Gold LH, Cook KK, Sands SB, Zhao SX, Soglia JR, Kalgutkar AS, Arneric SP, Rogers BN (2006) Discovery of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide, an agonist of the α7 nicotinic acetylcholine receptor, for the potential treatment of cognitive deficits in schizophrenia: synthesis and structure–activity relationship. J Med Chem 49:4425–4436

    Article  PubMed  CAS  Google Scholar 

  • Yano K, Koda K, Ago Y, Kobayashi H, Kawasaki T, Takuma K, Matsuda T (2009) Galantamine improves apomorphine-induced deficits in prepulse inhibition via muscarinic ACh receptors in mice. Br J Pharmacol 156:173–180

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (from the Ministry of Education, Culture, Sports, Science and Technology of Japan).

Conflict of interest

The authors state no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Matsuda.

Additional information

Yuki Kita and Yukio Ago equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kita, Y., Ago, Y., Takano, E. et al. Galantamine increases hippocampal insulin-like growth factor 2 expression via α7 nicotinic acetylcholine receptors in mice. Psychopharmacology 225, 543–551 (2013). https://doi.org/10.1007/s00213-012-2841-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2841-7

Keywords

Navigation