, Volume 225, Issue 3, pp 531–542 | Cite as

Chronic cannabinoid exposure reduces phencyclidine-induced schizophrenia-like positive symptoms in adult rats

  • Maria Sabrina Spano
  • Liana Fattore
  • Francesca Cadeddu
  • Walter Fratta
  • Paola Fadda
Original Investigation



Chronic cannabis use can induce psychotic states that resemble schizophrenia. Yet, schizophrenic patients often smoke cannabis as a form of self-medication to counter the aversive symptoms of schizophrenia. We recently demonstrated an ameliorating effect of cannabinoid self-administration (SA) on negative and cognitive schizophrenia-like symptoms induced experimentally by the non-competitive N-methyl-d-aspartate receptor antagonist phencyclidine (PCP). Whether cannabinoid SA alleviates or exacerbates schizophrenia-like positive symptoms is still unclear.


This follow-up study aimed to evaluate the effect of self-administered cannabinoid on PCP-induced schizotypic positive symptoms in adult rats.


Male rats were trained to self-administer either the cannabinoid CB1 receptor agonist WIN 55,212-2 (WIN; 12.5 μg/kg/infusion) or its vehicle (Veh) intravenously. The effects of acute and chronic intermittent intraperitoneal administration of PCP (2.5 mg/kg) on motor parameters were then tested in Veh-SA and WIN-SA.


Cannabinoid SA significantly attenuated the psychotomimetic effects of PCP exposure observed in control rats. Following acute PCP administration, WIN-SA animals displayed more frequent rearing and lower anxiety-like profile than Veh-SA rats. WIN-SA rats also exhibited lower behavioural sensitisation to chronic PCP treatment as demonstrated by reduced hyperlocomotion in response to an acute PCP challenge. In addition, parallel experiments performed in experimenter-administered rats that received WIN at comparable SA doses confirmed the ameliorating effects of cannabinoid exposure on PCP-induced schizotypic behaviours, indicating that motivational effects were not responsible for the ameliorative effects of cannabinoids.


Our results indicate that cannabis may exert protective effects on positive schizotypic symptoms in adult animals such as hypermotility and anxiety state.


Cannabinoids PCP Schizophrenia Self-administration Psychosis Locomotor activity Anxiety Comorbidity Abuse 



This study was supported by funds (PRIN 2005) from the Italian Ministry of University and Scientific Research (MIUR). The authors are grateful to Dr. Barbara Tuveri for animal care and technical assistance.

Conflict of interest



  1. Adams B, Moghaddam B (1998) Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine. J Neurosci 18:5545–5554PubMedGoogle Scholar
  2. Arseneault L, Cannon M, Witton J, Murray RM (2004) Causal association between cannabis and psychosis: examination of the evidence. Br J Psychiatry 184:110–117PubMedCrossRefGoogle Scholar
  3. Ballmaier M, Bortolato M, Rizzetti C, Zoli M, Gessa G, Heinz A, Spano P (2007) Cannabinoid receptor antagonists counteract sensorimotor gating deficits in the phencyclidine model of psychosis. Neuropsychopharmacology 32:2098–2107PubMedCrossRefGoogle Scholar
  4. Bersani G, Orlandi V, Kotzalidis GD, Pancheri P (2002) Cannabis and schizophrenia: impact on onset, course, psychopathology and outcomes. Eur Arch Psychiatry Clin Neurosci 252:86–92PubMedCrossRefGoogle Scholar
  5. Braga RJ, Petrides G, Figueira I (2004) Anxiety disorders in schizophrenia. Compr Psychiatry 45:460–468PubMedCrossRefGoogle Scholar
  6. Breivogel CS, Childers SR (1998) The functional neuroanatomy of brain cannabinoid receptors. Neurobiol Dis 5:417–431PubMedCrossRefGoogle Scholar
  7. Bruhwyler J, Chleide E, Mercier M (1990) Clozapine: an atypical neuroleptic. Neurosci Biobehav Rev Winter 14:357–363CrossRefGoogle Scholar
  8. Campiani G, Nacci V, Bechelli S, Ciani SM, Garofalo A, Fiorini I, Wikström H, de Boer P, Liao Y, Tepper PG, Cagnotto A, Mennini T (1998) New antipsychotic agents with serotonin and dopamine antagonist properties based on a pyrrolo[2,1-b][1,3]benzothiazepine structure. J Med Chem 41:3763–3772PubMedCrossRefGoogle Scholar
  9. Cannizzaro C, Martire M, Cannizzaro E, Provenzano G, Gagliano M, Carollo A, Mineo A, Steardo L (2001) Long-lasting handling affects behavioural reactivity in adult rats of both sexes prenatally exposed to diazepam. Brain Res 904:225–233PubMedCrossRefGoogle Scholar
  10. Choleris E, Thomas AW, Kavaliers M, Prato FS (2001) A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci Biobehav Rev 25:235–260PubMedCrossRefGoogle Scholar
  11. Corbett R, Camacho F, Woods AT, Kerman LL, Fishkin RJ, Brooks K, Dunn RW (1995) Antipsychotic agents antagonize non-competitive N-methyl-d-aspartate antagonist-induced behaviors. Psychopharmacology 120:67–74PubMedCrossRefGoogle Scholar
  12. Corbillé AG, Valjent E, Marsicano G, Ledent C, Lutz B, Hervé D, Girault JA (2007) Role of cannabinoid type 1 receptors in locomotor activity and striatal signaling in response to psychostimulants. J Neurosci 27:6937–6947PubMedCrossRefGoogle Scholar
  13. D’Souza DC, Abi-Saab WM, Madonick S, Wray Y, Forselius K, Mcdougall L, Brush L, Cassello K, Krystal JH (2000) Cannabinoids and psychosis: evidence from studies with I.V. THC in schizophrenic patients and controls. Schizophr Res 41(Suppl):33CrossRefGoogle Scholar
  14. D’Souza DC, Abi-Saab WM, Madonick S, Forselius-Bielen K, Doersch A, Braley G, Gueorguieva R, Cooper TB, Krystal JH (2005) Delta-9-tetrahydrocannabinol effects in schizophrenia: implications for cognition, psychosis, and addiction. Biol Psychiatry 57:594–608PubMedCrossRefGoogle Scholar
  15. Daenen EW, Wolterink G, Van Ree JM (2003) Hyperresponsiveness to phencyclidine in animals lesioned in the amygdala on day 7 of life. Implications for an animal model of schizophrenia. Eur Neuropsychopharmacol 13:273–279PubMedCrossRefGoogle Scholar
  16. Degenhardt L, Hall W, Lynskey M (2001) Alcohol, cannabis and tobacco use among Australians: a comparison of their associations with other drug use and use disorders, affective and anxiety disorders, and psychosis. Addiction 96:1603–1614PubMedCrossRefGoogle Scholar
  17. Degenhardt L, Tennant C, Gilmour S, Schofield D, Nash L, Hall W, McKay D (2007) The temporal dynamics of relationships between cannabis, psychosis and depression among young adults with psychotic disorders: findings from a 10-month prospective study. Psychol Med 37:927–934PubMedCrossRefGoogle Scholar
  18. Duke PJ, Pantelis C, McPhillips MA, Barnes TR (2001) Comorbid non-alcohol substance misuse among people with schizophrenia: epidemiological study in central London. Br J Psychiatry 179:509–513PubMedCrossRefGoogle Scholar
  19. Duncan GE, Sheitman BB, Lieberman JA (1999) An integrated view of pathophysiological models of schizophrenia. Brain Res Brain Res Rev 29:250–264PubMedCrossRefGoogle Scholar
  20. Ellenbroek BA, Liégeois JF (2003) JL 13, an atypical antipsychotic: a preclinical review. CNS Drug Rev Spring 9:41–56CrossRefGoogle Scholar
  21. Fattore L, Cossu G, Martellotta MC, Fratta W (2001) Intravenous self-administration of the cannabinoid CB1 receptor agonist WIN 55,212-2 in rats. Psychopharmacology 156:410–416PubMedCrossRefGoogle Scholar
  22. Fattore L, Spano MS, Altea S, Angius F, Fadda P, Fratta W (2007) Cannabinoid self-administration in rats: sex differences and the influence of ovarian function. Br J Pharmacol 152:795–804PubMedCrossRefGoogle Scholar
  23. Fattore L, Spano MS, Altea S, Fadda P, Fratta W (2010) Drug- and cue-induced reinstatement of cannabinoid seeking behaviour in male and female rats: influences of ovarian hormones. Brit J Pharmacol 160:724–735CrossRefGoogle Scholar
  24. Fernández-Ruiz J, Gonzáles S (2005) Cannabinoid control of motor function at the basal ganglia. Handb Exp Pharmacol 168:479–507PubMedCrossRefGoogle Scholar
  25. Freed WJ, Bing LA, Wyatt RJ (1984) Effects of neuroleptics on phencyclidine (PCP)-induced locomotor stimulation in mice. Neuropharmacology 23:175–181PubMedCrossRefGoogle Scholar
  26. Gentsch C, Lichtsteiner M, Feer H (1987) Open field and elevated plus-maze: a behavioural comparison between spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats and the effects of chlordiazepoxide. Behav Brain Res 25:101–107PubMedCrossRefGoogle Scholar
  27. Gorriti MA, Rodríguez de Fonseca F, Navarro M, Palomo T (1999) Chronic (−)-delta9-tetrahydrocannabinol treatment induces sensitization to the psychomotor effects of amphetamine in rats. Eur J Pharmacol 365:133–142PubMedCrossRefGoogle Scholar
  28. Gray JA (1979) Anxiety and the brain: not by neurochemistry alone. Psychol Med 9:605–609PubMedCrossRefGoogle Scholar
  29. Grossen NE, Kelley MJ (1972) Species-specific behavior and acquisition of avoidance behavior in rats. J Comp Physiol Psychol 81:307–310PubMedCrossRefGoogle Scholar
  30. Hájos N, Freund TF (2002) Distinct cannabinoid sensitive receptors regulate hippocampal excitation and inhibition. Chem Phys Lipids 121(1–2):73–82PubMedCrossRefGoogle Scholar
  31. Haller J, Szirmai M, Varga B, Ledent C, Freund TF (2005) Cannabinoid CB1 receptor dependent effects of the NMDA antagonist phencyclidine in the social withdrawal model of schizophrenia. Behav Pharmacol 16:415–422PubMedCrossRefGoogle Scholar
  32. Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583PubMedGoogle Scholar
  33. Hill MN, Gorzalka BB (2009) The endocannabinoid system and the treatment of mood and anxiety disorders. CNS Neurol Disord Drug Targets 8:451–458PubMedCrossRefGoogle Scholar
  34. Hori T, Subramaniam S, Srivastava LK, Quirion R (2000) Behavioral and neurochemical alterations following repeated phencyclidine administration in rats with neonatal ventral hippocampal lesions. Neuropharmacology 39:2478–2491PubMedCrossRefGoogle Scholar
  35. Jablensky A, Sartorius N, Ernberg G, Anker M, Korten A, Cooper JE, Day R, Bertelsen A (1992) Schizophrenia: manifestations, incidence and course in different cultures. A World Health Organization ten-country study. Psychol Med Monogr 20:1–97CrossRefGoogle Scholar
  36. Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308PubMedGoogle Scholar
  37. Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225PubMedCrossRefGoogle Scholar
  38. Jiang W, Zhang Y, Xiao L, Van Cleemput J, Ji SP, Bai G, Zhang X (2005) Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. J Clin Invest 115:3104–3116PubMedCrossRefGoogle Scholar
  39. Jinks AL, McGregor IS (1997) Modulation of anxiety-related behaviours following lesions of the prelimbic or infralimbic cortex in the rat. Brain Res 772:181–190PubMedCrossRefGoogle Scholar
  40. Johnson KM, Phillips M, Wang C, Kevetter GA (1998) Chronic phencyclidine induces behavioral sensitization and apoptotic cell death in the olfactory and piriform cortex. J Neurosci Res 52:709–722PubMedCrossRefGoogle Scholar
  41. Katona I, Rancz EA, Acsady L, Ledent C, Mackie K, Hajos N, Freund TF (2001) Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. J Neurosci 21:9506–9518PubMedGoogle Scholar
  42. Katsetos CD, Hyde TM, Herman MM (1997) Neuropathology of the cerebellum in schizophrenia-an update: 1996 and future directions. Biol Psychiatry 42:213–224PubMedCrossRefGoogle Scholar
  43. Kavaliers M, Choleris E (2001) Antipredator responses and defensive behavior: ecological and ethological approaches for the neurosciences. Neurosci Biobehav Rev 25:577–586PubMedCrossRefGoogle Scholar
  44. Kitaichi K, Yamada K, Yoneda Y, Ogita K, Hasegawa T, Furukawa H, Nabeshima T (1995) Risperidone prevents the development of supersensitivity, but not tolerance, to phencyclidine in rats treated with subacute phencyclidine. Life Sci 56:531–543PubMedCrossRefGoogle Scholar
  45. Krebs-Thomson K, Lehmann-Masten V, Naiem S, Paulus MP, Geyer MA (1998) Modulation of phencyclidine-induced changes in locomotor activity and patterns in rats by serotonin. Eur J Pharmacol 343:135–143PubMedCrossRefGoogle Scholar
  46. Lafenêtre P, Chaouloff F, Marsicano G (2007) The endocannabinoid system in the processing of anxiety and fear and how CB1 receptors may modulate fear extinction. Pharmacol Res 56:367–381PubMedCrossRefGoogle Scholar
  47. Long LE, Chesworth R, Huang XF, McGregor IS, Arnold JC, Karl T (2009) A behavioural comparison of acute and chronic Delta9-tetrahydrocannabinol and cannabidiol in C57BL/6JArc mice. Int J Neuropsychopharmacol 29:1–16Google Scholar
  48. Mailleux P, Vanderhaeghen JJ (1993) Dopaminergic regulation of cannabinoid receptor mRNA levels in the rat caudate-putamen: an in situ hybridization study. J Neurochem 61:1705–1712PubMedCrossRefGoogle Scholar
  49. Maj J, Rogóz Z, Skuza G, Mazela H (1996) Neuropharmacological profile of EMD 57445, a sigma receptor ligand with potential antipsychotic activity. Eur J Pharmacol 315:235–243PubMedCrossRefGoogle Scholar
  50. Marco EM, García-Gutiérrez MS, Bermúdez-Silva FJ, Moreira FA, Guimarães F, Manzanares J, Viveros MP (2011) Endocannabinoid system and psychiatry: in search of a neurobiological basis for detrimental and potential therapeutic effects. Front Behav Neurosci 5:63PubMedCrossRefGoogle Scholar
  51. Marcotte ER, Pearson DM, Srivastava LK (2001) Animal models of schizophrenia: a critical review. J Psychiatry Neurosci 26:395–410PubMedGoogle Scholar
  52. Masserano JM, Karoum F, Wyatt RJ (1999) SR 141716A, a CB1 cannabinoid receptor antagonist, potentiates the locomotor stimulant effects of amphetamine and apomorphine. Behav Pharmacol 10:429–432PubMedCrossRefGoogle Scholar
  53. Masuo Y, Noguchi J, Morita S, Matsumoto Y (1995) Effect of intracerebroventricular administration of pituitary adenylate cyclase-activating polypeptide (PACAP) on the motor activity and reserpine-induced hypothermia in murines. Brain Res 700:219–226PubMedCrossRefGoogle Scholar
  54. Matsuda LA, Bonner TI, Lolait SJ (1993) Localization of cannabinoid receptor mRNA in rat brain. J Comp Neurol 327:535–550PubMedCrossRefGoogle Scholar
  55. Menezes PR, Mann AH (1996) Mortality among patients with non-affective functional psychoses in a metropolitan area of south-eastern Brazil. Rev Saude Publica 30:304–309PubMedCrossRefGoogle Scholar
  56. Miyamoto M, Narumi S, Nagai T, Nagawa Y (1984) A TRH analog (DN-1417): motor stimulation with rearing related to catecholaminergic mechanism in rats. Neuropharmacology 23:61–72PubMedCrossRefGoogle Scholar
  57. Moghaddam B, Jackson ME (2003) Glutamatergic animal models of schizophrenia. Ann N Y Acad Sci 1003:131–137PubMedCrossRefGoogle Scholar
  58. Mohn AR, Gainetdinov RR, Caron MG, Koller BH (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98:427–436PubMedCrossRefGoogle Scholar
  59. Moreira FA, Guimanares FS (2005) Cannabidiol inhibits the hyperlocomotion induced by psychotomimetic drugs in mice. Eur J Pharmacol 512:199–205PubMedCrossRefGoogle Scholar
  60. Morris BJ, Cochran SM, Pratt JA (2005) PCP: from pharmacology to modelling schizophrenia. Curr Opin Pharmacol 5:101–106PubMedCrossRefGoogle Scholar
  61. Murray TF, Horita A (1979) Phencyclidine-induced stereotyped behavior in rats: dose response effects and antagonism by neuroleptics. Life Sci 24:2217–2225PubMedCrossRefGoogle Scholar
  62. Nabeshima T, Yamaguchi K, Yamada K, Hiramatsu M, Furukawa H, Kameyama T (1983) Phencyclidine-induced stereotyped behaviors in rats following specific neurotoxin lesions of the striatum. Eur J Pharmacol 93:229–234PubMedCrossRefGoogle Scholar
  63. Nabeshima T, Fukaya H, Yamaguchi K, Ishikawa K, Furukawa H, Kameyama T (1987) Development of tolerance and supersensitivity to phencyclidine in rats after repeated administration of phencyclidine. Eur J Pharmacol 135:23–33PubMedCrossRefGoogle Scholar
  64. Nagai T, Noda Y, Une T, Furukawa K, Furukawa H, Kan QM, Nabeshima T (2003) Effect of AD-5423 on animal models of schizophrenia: phencyclidine-induced behavioral changes in mice. Neuroreport 14:269–272PubMedCrossRefGoogle Scholar
  65. Nicolás MJ, López-Azcárate J, Valencia M, Alegre M, Pérez-Alcázar M, Iriarte J, Artieda J (2011) Ketamine-induced oscillations in the motor circuit of the rat basal ganglia. PLoS One 6:21814CrossRefGoogle Scholar
  66. Nunn JA, Rizza F, Peters ER (2001) The incidence of schizotypy among cannabis and alcohol users. J Nerv Ment Dis 189:741–748PubMedCrossRefGoogle Scholar
  67. Parolaro D, Realini N, Vigano D, Guidali C, Rubino T (2010) The endocannabinoid system and psychiatric disorders. Exp Neurol 224:3–14PubMedCrossRefGoogle Scholar
  68. Peralta V, Cuesta MJ (1992) Influence of cannabis abuse on schizophrenic psychopathology. Acta Psychiatr Scand 85:127–130PubMedCrossRefGoogle Scholar
  69. Pistis M, Perra S, Pillolla G, Melis M, Gessa GL, Muntoni AL (2004) Cannabinoids modulate neuronal firing in the rat basolateral amygdala: evidence for CB1- and non-CB1-mediated actions. Neuropharmacology 46:115–125PubMedCrossRefGoogle Scholar
  70. Pryor GT, Husain S, Larse F, McKenzie CE, Carrr JD, Braude MC (1977) Interactions between delta9-tetrahydrocannabinol and phencyclidine hydrochloride in rats. Pharmacol Biochem Behav 6:126–136Google Scholar
  71. Regier DA, Farmer ME, Rae DS, Locke BZ, Keith SJ, Judd LL, Goodwin FK (1990) Comorbidity of mental disorders with alcohol and other drug abuse. Results from the Epidemiologic Catchment Area (ECA) Study. JAMA 264:2511–2518PubMedCrossRefGoogle Scholar
  72. Rodríguez de Fonseca F, Del Arco I, Martín-Calderón JL, Gorriti MA, Navarro M (1998) Role of the endogenous cannabinoid system in the regulation of motor activity. Neurobiol Dis 5:483–501PubMedCrossRefGoogle Scholar
  73. Rosen JL, Miller TJ, D’Andrea JT, McGlashan TH, Woods SW (2006) Comorbid diagnoses in patients meeting criteria for the schizophrenia prodrome. Schizophr Res 85:124–131PubMedCrossRefGoogle Scholar
  74. Sams-Dodd F (1995) Distinct effects of d-amphetamine and phencyclidine on the social behaviour of rats. Behav Pharmacol 6:55–65PubMedGoogle Scholar
  75. Sams-Dodd F (1998) Effects of continuous D-amphetamine and phencyclidine administration on social behaviour, stereotyped behaviour, and locomotor activity in rats. Neuropsychopharmacology 19:18–25PubMedCrossRefGoogle Scholar
  76. Schneier FR, Siris SG (1987) A review of psychoactive substance use and abuse in schizophrenia. Patterns of drug choice. J Nerv Ment Dis 175:641–652PubMedCrossRefGoogle Scholar
  77. Schofield D, Tennant C, Nash L, Degenhardt L, Cornish A, Hobbs C, Brennan G (2006) Reasons for cannabis use in psychosis. Aust N Z J Psychiatry 40:570–574PubMedCrossRefGoogle Scholar
  78. Schwarcz G, Karajgi B (2010) Improvement in refractory psychosis with dronabinol: four case reports. J Clin Psychiatry 71:1552–1553PubMedCrossRefGoogle Scholar
  79. Schwarcz G, Karajgi B, McCarthy R (2009) Synthetic delta-9-tetrahydrocannabinol (dronabinol) can improve the symptoms of schizophrenia. J Clin Psychopharmacol 29:255–258PubMedCrossRefGoogle Scholar
  80. Skosnik PD, Spatz-Glenn L, Park S (2001) Cannabis use is associated with schizotypy and attentional disinhibition. Schizophr Res 48:83–92PubMedCrossRefGoogle Scholar
  81. Solowij N, Yücel M, Respondek C, Whittle S, Lindsay E, Pantelis C, Lubman DI (2011) Cerebellar white-matter changes in cannabis users with and without schizophrenia. Psychol Med 41:2349–2359PubMedCrossRefGoogle Scholar
  82. Spano MS, Fadda P, Frau R, Fattore L, Fratta W (2010) Cannabinoid self-administration attenuates PCP-induced schizophrenia-like symptoms in adult rats. Eur Neuropsychopharmacol 20:25–36PubMedCrossRefGoogle Scholar
  83. Steinpreis RE, Sokolowski JD, Papanikolaou A, Salamone JD (1994) The effects of haloperidol and clozapine on PCP- and amphetamine-induced suppression of social behavior in the rat. Pharmacol Biochem Behav 47:579–585PubMedCrossRefGoogle Scholar
  84. Sturgeon RD, Fessler RG, Meltzer HY (1979) Behavioral rating scales for assessing phencyclidine-induced locomotor activity, stereotyped behavior and ataxia in rats. Eur J Pharmacol 59:169–179PubMedCrossRefGoogle Scholar
  85. Sturgeon RD, Fessler RG, London SF, Meltzer HY (1982) Behavioral effects of chronic phencyclidine administration in rats. Psychopharmacology 76:52–56PubMedCrossRefGoogle Scholar
  86. Tang Y, Zou H, Strong JA, Cui Y, Xie Q, Zhao G, Jin M, Yu L (2006) Paradoxical effects of very low dose MK-801. Eur J Pharmacol 537:77–84PubMedCrossRefGoogle Scholar
  87. Thiemann G, van der Stelt M, Petrosino S, Molleman A, Di Marzo V, Hasenöhrl RU (2008) The role of the CB1 cannabinoid receptor and its endogenous ligands, anandamide and 2-arachidonoylglycerol, in amphetamine-induced behavioural sensitization. Behav Brain Res 187:289–296PubMedCrossRefGoogle Scholar
  88. Tibbo P, Swainson J, Chue P, LeMelledo JM (2003) Prevalence and relationship to delusions and hallucinations of anxiety disorders in schizophrenia. Depress Anxiety 17:65–72PubMedCrossRefGoogle Scholar
  89. Townsend MH, Wilson MS (2005) Comorbid anxiety disorders and divalproex sodium use among partial hospital patients with psychotic disorders. Compr Psychiatry 46:368–370PubMedCrossRefGoogle Scholar
  90. Treit D, Fundytus M (1989) Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav 31:959–962CrossRefGoogle Scholar
  91. Turner WM, Tsuang MT (1990) Impact of substance abuse on the course and outcome of schizophrenia. Schizophr Bull 16:87–95PubMedCrossRefGoogle Scholar
  92. Tzavara ET, Wade M, Nomikos GG (2003) Biphasic effects of cannabinoids on acetylcholine release in the hippocampus: site and mechanism of action. J Neurosci 23:9374–9384PubMedGoogle Scholar
  93. Van Mastrigt S, Addington J, Addington D (2004) Substance misuse at presentation to an early psychosis program. Soc Psychiatry Psychiatr Epidemiol 39:69–72PubMedCrossRefGoogle Scholar
  94. Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 151:99–120PubMedCrossRefGoogle Scholar
  95. Verdoux H, Tournier M, Cougnard A (2005) Impact of substance use on the onset and course of early psychosis. Schizophr Res 79:69–71PubMedCrossRefGoogle Scholar
  96. Viveros MP, Marco EM, File SE (2005) Endocannabinoid system and stress and anxiety responses. Pharmacol Biochem Behav 81:331–342PubMedCrossRefGoogle Scholar
  97. Viveros MP, Marco EM, Llorente R, López-Gallardo M (2007) Endocannabinoid system and synaptic plasticity: implications for emotional responses. Neural Plast 52908Google Scholar
  98. Winklbaur B, Ebner N, Sachs G, Thau K, Fischer G (2006) Substance abuse in patients with schizophrenia. Dialogues Clin Neurosci 8:37–43PubMedGoogle Scholar
  99. Wolf ME (1998) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog Neurobiol 54:679–720PubMedCrossRefGoogle Scholar
  100. Xu X, Domino EF (1994) Phencyclidine-induced behavioral sensitization. Pharmacol Biochem Behav 47:603–608PubMedCrossRefGoogle Scholar
  101. Yui K, Goto K, Ikemoto S, Ishiguro T, Angrist B, Duncan GE, Sheitman BB, Lieberman JA, Bracha SH, Ali SF (1999) Neurobiological basis of relapse prediction in stimulant-induced psychosis and schizophrenia: the role of sensitization. Mol Psychiatry 4:512–523PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Maria Sabrina Spano
    • 1
  • Liana Fattore
    • 1
    • 2
  • Francesca Cadeddu
    • 3
  • Walter Fratta
    • 2
    • 3
  • Paola Fadda
    • 2
    • 3
  1. 1.CNR Neuroscience InstituteNational Research CouncilMonserrato (Cagliari)Italy
  2. 2.Centre of Excellence “Neurobiology of Dependence”University of CagliariMonserrato (Cagliari)Italy
  3. 3.Division of Neuroscience and Clinical Pharmacology, Department of Biomedical SciencesUniversity of Cagliari (Cittadella Universitaria of Monserrato)Monserrato (Cagliari)Italy

Personalised recommendations