, Volume 225, Issue 1, pp 75–93 | Cite as

Behavioral, neurochemical and pharmaco-EEG profiles of the psychedelic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats

  • Tomáš PáleníčekEmail author
  • Michaela Fujáková
  • Martin Brunovský
  • Jiří Horáček
  • Ingmar Gorman
  • Marie Balíková
  • Lukáš Rambousek
  • Kamila Syslová
  • Petr Kačer
  • Petr Zach
  • Věra Bubeníková-Valešová
  • Filip Tylš
  • Anna Kubešová
  • Jana Puskarčíková
  • Cyril Höschl
Original Investigation


Rationale and objectives

Behavioral, neurochemical and pharmaco-EEG profiles of a new synthetic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats were examined.

Materials and methods

Locomotor effects, prepulse inhibition (PPI) of acoustic startle reaction (ASR), dopamine and its metabolite levels in nucleus accumbens (NAc), EEG power spectra and coherence in freely moving rats were analysed. Amphetamine was used as a reference compound.


2C-B had a biphasic effect on locomotion with initial inhibitory followed by excitatory effect; amphetamine induced only hyperlocomotion. Both drugs induced deficits in the PPI; however they had opposite effects on ASR. 2C-B increased dopamine but decreased 3,4-dihydroxyphenylacetic acid (DOPAC) in the NAc. Low doses of 2C-B induced a decrease in EEG power spectra and coherence. On the contrary, high dose of 2C-B 50 mg/kg had a temporally biphasic effect with an initial decrease followed by an increase in EEG power; decrease as well as increase in EEG coherence was observed. Amphetamine mainly induced an increase in EEG power and coherence in theta and alpha bands. Increases in the theta and alpha power and coherence in 2C-B and amphetamine were temporally linked to an increase in locomotor activity and DA levels in NAc.


2C-B is a centrally active compound similar to other hallucinogens, entactogens and stimulants. Increased dopamine and decreased DOPAC in the NAc may reflect its psychotomimetic and addictive potential and monoaminoxidase inhibition. Alterations in brain functional connectivity reflected the behavioral and neurochemical changes produced by the drug; a correlation between EEG changes and locomotor behavior was observed.


4-Bromo-2,5-dimethoxyphenethylamine (2C-B) Amphetamine Serotonin Dopamine Nucleus accumbens Behavior Microdialysis EEG power spectra EEG coherence Rats 



This study was supported by the grants IGA MHCR NS 10374, NS 10375, NT 13897, MEYSCR 1M0517, MHCR MZ0PCP2005, MICR VG20122015075 and VG20122015080. We thank Craig Hampson BSc (Hons) for his helpful comments and language correction.


  1. Acuna-Castillo C, Villalobos C, Moya PR, Saez P, Cassels BK, Huidobro-Toro JP (2002) Differences in potency and efficacy of a series of phenylisopropylamine/phenylethylamine pairs at 5-HT(2A) and 5-HT(2C) receptors. Br J Pharmacol 136:510–519PubMedCrossRefGoogle Scholar
  2. Adams LM, Geyer MA (1982) LSD-induced alterations of locomotor patterns and exploration in rats. Psychopharmacol (Berl) 77:179–185CrossRefGoogle Scholar
  3. Ambrosini MV, Gambelunghe C, Mariucci G, Bruschelli G, Adami M, Giuditta A (1994) Sleep-wake variables and EEG power spectra in Mongolian gerbils and Wistar rats. Physiol Behav 56:963–968PubMedCrossRefGoogle Scholar
  4. Berankova K, Szkutova M, Balikova M (2007) Distribution profile of 2,5-dimethoxy-4-bromoamphetamine (DOB) in rats after oral and subcutaneous doses. Forensic Sci Int 170:94–99PubMedCrossRefGoogle Scholar
  5. Bossong MG, Van Dijk JP, Niesink RJ (2005) Methylone and mCPP, two new drugs of abuse? Addict Biol 10:321–323PubMedCrossRefGoogle Scholar
  6. Bourin M, Petit-Demouliere B, Dhonnchadha BN, Hascoet M (2007) Animal models of anxiety in mice. Fundam Clin Pharmacol 21:567–574PubMedCrossRefGoogle Scholar
  7. Breier A, Adler CM, Weisenfeld N, Su TP, Elman I, Picken L, Malhotra AK, Pickar D (1998) Effects of NMDA antagonism on striatal dopamine release in healthy subjects: application of a novel PET approach. Synapse 29:142–147PubMedCrossRefGoogle Scholar
  8. Bronson ME, Jiang W, DeRuiter J, Clark CR (1995) A behavioral comparison of Nexus, cathinone, BDB, and MDA. Pharmacol Biochem Behav 51:473–475PubMedCrossRefGoogle Scholar
  9. Brunell SC, Spear LP (2006) Effects of acute ethanol or amphetamine administration on the acoustic startle response and prepulse inhibition in adolescent and adult rats. Psychopharmacology 186:579–586PubMedCrossRefGoogle Scholar
  10. Bubenikova V, Votava M, Horacek J, Palenicek T (2005) Relation of sex and estrous phase to deficits in prepulse inhibition of the startle response induced by ecstasy (MDMA). Behav Pharmacol 16:127–130PubMedCrossRefGoogle Scholar
  11. Carmo H, de Boer D, Remiao F, Carvalho F, dos Reys LA, de Lourdes BM (2004) Metabolism of the designer drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in mice, after acute administration. JChromatogrB Analyt Technol Biomed Life Sci 811:143–152Google Scholar
  12. Carmo H, Hengstler JG, de Boer D, Ringel M, Remiao F, Carvalho F, Fernandes E, dos Reys LA, Oesch F, de Lourdes BM (2005) Metabolic pathways of 4-bromo-2,5-dimethoxyphenethylamine (2C-B): analysis of phase I metabolism with hepatocytes of six species including human. Toxicology 206:75–89PubMedCrossRefGoogle Scholar
  13. Caudevilla-Galligo F, Riba J, Ventura M, Gonzalez D, Farre M, Barbanoj MJ, Bouso JC (2012) 4-Bromo-2,5-dimethoxyphenethylamine (2C-B): presence in the recreational drug market in Spain, pattern of use and subjective effects. J Psychopharmacol 26:1026–1035PubMedCrossRefGoogle Scholar
  14. Cole MD, Lea C, Oxley N (2002) 4-Bromo-2,5-dimethoxyphenethylamine (2C-B): a review of the public domain literature. Sci Justice 42:223–224PubMedCrossRefGoogle Scholar
  15. Davis M (1987) Mescaline: excitatory effects on acoustic startle are blocked by serotonin2 antagonists. Psychopharmacol (Berl) 93:286–291CrossRefGoogle Scholar
  16. Davis M, Walters JK (1977) Psilocybin: biphasic dose-response effects on the acoustic startle reflex in the rat. Pharmacol Biochem Behav 6:427–431PubMedCrossRefGoogle Scholar
  17. de Boer D, Bosman I (2004) A new trend in drugs-of-abuse; the 2C-series of phenethylamine designer drugs. Pharm World Sci 26:110–113PubMedCrossRefGoogle Scholar
  18. de Boer D, Gijzels MJ, Bosman IJ, Maes RA (1999) More data about the new psychoactive drug 2C-B. J Anal Toxicol 23:227–228PubMedGoogle Scholar
  19. de Boer D, Bosman IJ, Hidvegi E, Manzoni C, Benko AA, dos Reys LJ, Maes RA (2001) Piperazine-like compounds: a new group of designer drugs-of-abuse on the European market. Forensic Sci Int 121:47–56PubMedCrossRefGoogle Scholar
  20. Deutch AY, Cameron DS (1992) Pharmacological characterization of dopamine systems in the nucleus accumbens core and shell. Neuroscience 46:49–56PubMedCrossRefGoogle Scholar
  21. Dimpfel W, Spuler M, Borbe HO (1988) Monitoring of the effects of antidepressant drugs in the freely moving rat by radioelectroencephalography (tele-stereo-EEG). Neuropsychobiology 19:116–120PubMedCrossRefGoogle Scholar
  22. Dimpfel W, Spuler M, Nichols DE (1989) Hallucinogenic and stimulatory amphetamine derivatives: fingerprinting DOM, DOI, DOB, MDMA, and MBDB by spectral analysis of brain field potentials in the freely moving rat (Tele-Stereo-EEG). Psychopharmacol (Berl) 98:297–303CrossRefGoogle Scholar
  23. EMCDDA (2004) Report on the risk assessment of 2C-I, 2C-T-2 and 2C-T-7 in the framework of the joint action on new synthetic drugs. European monitoring Centre for Drugs and Drug Addiction (EMCDDA)Google Scholar
  24. Everson CA, Bergmann BM, Rechtschaffen A (1989a) Sleep deprivation in the rat: III. Total sleep deprivation. Sleep 12:13–21PubMedGoogle Scholar
  25. Everson CA, Gilliland MA, Kushida CA, Pilcher JJ, Fang VS, Refetoff S, Bergmann BM, Rechtschaffen A (1989b) Sleep deprivation in the rat: IX. Recover Sleep 12:60–67Google Scholar
  26. Fiserova M, Consolo S, Krsiak M (1999) Chronic morphine induces long-lasting changes in acetylcholine release in rat nucleus accumbens core and shell: an in vivo microdialysis study. Psychopharmacol (Berl) 142:85–94CrossRefGoogle Scholar
  27. Fujakova M, Palenicek T, Tyls F, Kubesova A, Brunovsky M, Krajca V, Horacek J (2011) The effect of phenylethylamine hallucinogens on quantitative electronecephalography and behavior in rats. Behav Pharmacol 22:e38Google Scholar
  28. Gentry WB, Ghafoor AU, Wessinger WD, Laurenzana EM, Hendrickson HP, Owens SM (2004) (+)-Methamphetamine-induced spontaneous behavior in rats depends on route of (+)METH administration. Pharmacol Biochem Behav 79:751–760PubMedCrossRefGoogle Scholar
  29. Geyer MA (1998) Behavioral studies of hallucinogenic drugs in animals: implications for schizophrenia research. Pharmacopsychiatry 31(Suppl 2):73–79PubMedCrossRefGoogle Scholar
  30. Geyer MA, Light RK, Rose GJ, Petersen LR, Horwitt DD, Adams LM, Hawkins RL (1979) A characteristic effect of hallucinogens on investigatory responding in rats. Psychopharmacol (Berl) 65:35–40CrossRefGoogle Scholar
  31. Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacol (Berl) 156:117–154CrossRefGoogle Scholar
  32. Glennon RA, Titeler M, Lyon RA (1988) A preliminary investigation of the psychoactive agent 4-bromo-2,5-dimethoxyphenethylamine: a potential drug of abuse. Pharmacol Biochem Behav 30:597–601PubMedCrossRefGoogle Scholar
  33. Gold LH, Geyer MA, Koob GF (1989) Neurochemical mechanisms involved in behavioral effects of amphetamines and related designer drugs. NIDA Res Monogr 94:101–126PubMedGoogle Scholar
  34. Hegadoren KM, Martin-Iverson MT, Baker GB (1995) Comparative behavioural and neurochemical studies with a psychomotor stimulant, an hallucinogen and 3,4-methylenedioxy analogues of amphetamine. Psychopharmacology (Berl) 118:295–304CrossRefGoogle Scholar
  35. Huang HH, Bai YM (2011) Persistent psychosis after ingestion of a single tablet of ‘2C-B’. Prog Neuropsychopharmacol Biol Psychiatry 35:293–294PubMedCrossRefGoogle Scholar
  36. Jahng JW, Houpt TA, Wessel TC, Chen K, Shih JC, Joh TH (1997) Localization of monoamine oxidase A and B mRNA in the rat brain by in situ hybridization. Synapse 25:30–36PubMedCrossRefGoogle Scholar
  37. Kalgutkar AS, Dalvie DK, Castagnoli N Jr, Taylor TJ (2001) Interactions of nitrogen-containing xenobiotics with monoamine oxidase (MAO) isozymes A and B: SAR studies on MAO substrates and inhibitors. Chem Res Toxicol 14:1139–1162PubMedCrossRefGoogle Scholar
  38. Kanamori T, Tsujikawa K, Ohmae Y, Iwata YT, Inoue H, Kishi T, Nakahama T, Inouye Y (2005) A study of the metabolism of methamphetamine and 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in isolated rat hepatocytes. Forensic Sci Int 148:131–137PubMedCrossRefGoogle Scholar
  39. Koch M (1999) The neurobiology of startle. Prog Neurobiol 59:107–128PubMedCrossRefGoogle Scholar
  40. Koch M, Schnitzler HU (1997) The acoustic startle response in rats—circuits mediating evocation, inhibition and potentiation. Behav Brain Res 89:35–49PubMedCrossRefGoogle Scholar
  41. Krebs-Thomson K, Geyer MA (1996) The role of 5-HT(1A) receptors in the locomotor-suppressant effects of LSD: WAY-100635 studies of 8-OH-DPAT, DOI and LSD in rats. Behav Pharmacol 7:551–559PubMedGoogle Scholar
  42. Krebs-Thomson K, Paulus MP, Geyer MA (1998) Effects of hallucinogens on locomotor and investigatory activity and patterns: influence of 5-HT2A and 5-HT2C receptors. Neuropsychopharmacology 18:339–351PubMedCrossRefGoogle Scholar
  43. Kubesova A, Palenicek T, Votava M, Fujakova M, Tyls F, Sustkova M, Krsiak M (2011) The influence of 5-HT 1A/2A antagonists on changes in ultrasonic vocalization in rats induced by administration of MDMA and 2C-B. Behav Pharmacol 22:e71CrossRefGoogle Scholar
  44. Lát J (1973) The analysis of habituation. Acta Neurobiol Exp (Wars) 33:771–789Google Scholar
  45. Lingford-Hughes A, Nutt D (2003) Neurobiology of addiction and implications for treatment. Br J Psychiatry 182:97–100PubMedCrossRefGoogle Scholar
  46. Lisman J, Buzsaki G (2008) A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophr Bull 34:974–980PubMedCrossRefGoogle Scholar
  47. Lobos M, Borges Y, Gonzalez E, Cassels BK (1992) The action of the psychoactive drug 2C-B on isolated rat thoracic aorta. Gen Pharmacol 23:1139–1142PubMedCrossRefGoogle Scholar
  48. Maloney KJ, Cape EG, Gotman J, Jones BE (1997) High-frequency gamma electroencephalogram activity in association with sleep-wake states and spontaneous behaviors in the rat. Neuroscience 76:541–555PubMedCrossRefGoogle Scholar
  49. Marona-Lewicka D, Nichols DE (2007) Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol Biochem Behav 87:453–461PubMedCrossRefGoogle Scholar
  50. Marona-Lewicka D, Thisted RA, Nichols DE (2005) Distinct temporal phases in the behavioral pharmacology of LSD: dopamine D2 receptor-mediated effects in the rat and implications for psychosis. Psychopharmacol (Berl) 180:427–435CrossRefGoogle Scholar
  51. Masse F, Hascoet M, Bourin M (2007a) Effect of GABAergic ligands on the anxiolytic-like activity of DOI (a 5-HT(2A/2C) agonist) in the four-plate test in mice. Eur Neuropsychopharmacol 17:483–491PubMedCrossRefGoogle Scholar
  52. Masse F, Nic Dhonnchadha BA, Hascoet M, Bourin M (2007b) Anxiolytic-like effect of 5-HT(2) ligands and benzodiazepines co-administration: comparison of two animal models of anxiety (the four-plate test and the elevated plus maze). Behav Brain Res 177:214–226PubMedCrossRefGoogle Scholar
  53. Moya PR, Berg KA, Gutierrez-Hernandez MA, Saez-Briones P, Reyes-Parada M, Cassels BK, Clarke WP (2007) Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J Pharmacol Exp Ther 321:1054–1061PubMedCrossRefGoogle Scholar
  54. Nichols DE (1986) Differences between the mechanism of action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class: entactogens. J Psychoactive Drugs 18:305–313PubMedCrossRefGoogle Scholar
  55. Palenicek T, Votava M, Bubenikova V, Horacek J (2005) Increased sensitivity to the acute effects of MDMA (“ecstasy”) in female rats. Physiol Behav 86:546–553PubMedCrossRefGoogle Scholar
  56. Palenicek T, Bubenikova V, Votava M, Horacek J (2006) Účinky selektivního antagonisty serotoninového 5-HT2C receptoru SB242084 na lokomoci potkana v animálních modelech psychóz (The effects of selective antagonist of serotonin 5-HT2C receptor SB242084 on rat`s locomotion in animal models of psychosis). Adiktologie 10:16–19Google Scholar
  57. Palenicek T, Hlinak Z, Bubenikova-Valesova V, Votava M, Horacek J (2007) An analysis of spontaneous behavior following acute MDMA treatment in male and female rats. Neuro Endocrinol Lett 28:781–788PubMedGoogle Scholar
  58. Palenicek T, Balikova M, Bubenikova-Valesova V, Horacek J (2008) Mescaline effects on rat behavior and its time profile in serum and brain tissue after a single subcutaneous dose. Psychopharmacol (Berl) 196:51–62CrossRefGoogle Scholar
  59. Palenicek T, Hlinak Z, Bubenikova-Valesova V, Novak T, Horacek J (2010) Sex differences in the effects of N, N-diethyllysergamide (LSD) on behavioural activity and prepulse inhibition. Prog Neuropsychopharmacol Biol Psychiatry 34:588–596PubMedCrossRefGoogle Scholar
  60. Palenicek T, Balikova M, Rohanova M, Novak T, Horacek J, Fujakova M, Hoschl C (2011a) Behavioral, hyperthermic and pharmacokinetic profile of para-methoxymethamphetamine (PMMA) in rats. Pharmacol Biochem Behav 98:130–139PubMedCrossRefGoogle Scholar
  61. Palenicek T, Fujakova M, Brunovsky M, Balikova M, Horacek J, Gorman I, Tyls F, Tislerova B, Sos P, Bubenikova-Valesova V, Hoschl C, Krajca V (2011b) Electroencephalographic spectral and coherence analysis of ketamine in rats: correlation with behavioral effects and pharmacokinetics. Neuropsychobiology 63:202–218PubMedCrossRefGoogle Scholar
  62. Palenicek T, Fujakova M, Tyls F, Brunovsky M, Kubesova A, Horacek J, Krajca V (2011c) Quantitative EEG in animal models of psychosis: the impact of behaviour. Eur Neuropsychopharmacol 21:S317CrossRefGoogle Scholar
  63. Palenicek, T, Fujakova, M, Tyls, F, Kubesova, A, Brunovsky, M, Horacek, J, and Krajca, V (2011d) The impact of behavior on cortical EEG in rats. Neuroimaging through the lifespan: Brain development and brain diseases from adolescence to senescence—Joint meeting of ISNIP/lSBET/ECNS September 7–10, 2011, University of Heidelberg, Germany, Abstrakt Book: 106Google Scholar
  64. Paulus MP, Geyer MA (1992) The effects of MDMA and other methylenedioxy-substituted phenylalkylamines on the structure of rat locomotor activity. Neuropsychopharmacology 7:15–31PubMedGoogle Scholar
  65. Paxinos G, Watson C (2003) The rat brain in stereotaxic coordinates, 4th edn. Elsevier, Academic Press, New YorkGoogle Scholar
  66. Pontieri FE, Tanda G, Di CG (1995) Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc Natl Acad Sci USA 92:12304–12308PubMedCrossRefGoogle Scholar
  67. Principe JC, Smith JR (1986) Design and implementation of linear phase FIR filters for biological signal processing. IEEE Trans Biomed Eng 33:550–559PubMedCrossRefGoogle Scholar
  68. Rechtschaffen A, Bergmann BM, Gilliland MA, Bauer K (1999) Effects of method, duration, and sleep stage on rebounds from sleep deprivation in the rat. Sleep 22:11–31PubMedGoogle Scholar
  69. Roberts AJ, Koob GF (1997) The neurobiology of addiction: an overview. Alcohol Health Res World 21:101–106PubMedGoogle Scholar
  70. Rohanova M, Balikova M (2009) Studies on distribution of para-methoxymethamphetamine (PMMA) designer drug in rats using gas chromatography-mass spectrometry. Leg Med (Tokyo) 11(Suppl 1):S429–S430CrossRefGoogle Scholar
  71. Rohanova M, Palenicek T, Balikova M (2008) Disposition of 4-bromo-2,5-dimethoxyphenethylamine (2C-B) and its metabolite 4-bromo-2-hydroxy-5-methoxyphenethylamine in rats after subcutaneous administration. Toxicol Lett 178:29–36PubMedCrossRefGoogle Scholar
  72. Segura M, Ortuno J, Farre M, McLure JA, Pujadas M, Pizarro N, Llebaria A, Joglar J, Roset PN, Segura J, de la Torre R (2001) 3,4-Dihydroxymethamphetamine (HHMA). A major in vivo 3,4-methylenedioxymethamphetamine (MDMA) metabolite in humans. Chem Res Toxicol 14:1203–1208PubMedCrossRefGoogle Scholar
  73. Shaw JC, O’Connor KP, Ongley OC (1978) EEG coherence as a measure of cerebral functional organization. In: Brazier MB, Petche H (eds) Architectonics of the cerebral cortex. Raven, New York, pp 245–256Google Scholar
  74. Shulgin AT, Carter MF (1975) Centrally active phenethylamines. Psychopharmacol Commun 1:93–98PubMedGoogle Scholar
  75. Shulgin A, Shulgin A (1991) PIHKAL: a chemical love story. Transform Press, Berkley, CAGoogle Scholar
  76. Smolinske SC, Rastogi R, Schenkel S (2005) Foxy methoxy: a new drug of abuse. J Med Toxicol 1:22–25PubMedCrossRefGoogle Scholar
  77. Spanos LJ, Yamamoto BK (1989) Acute and subchronic effects of methylenedioxymethamphetamine [(+/-)MDMA] on locomotion and serotonin syndrome behavior in the rat. Pharmacol Biochem Behav 32:835–840PubMedCrossRefGoogle Scholar
  78. Sumnall H, Wooding O (2009) Mephedrone—an update on current knowledge. Centre for Public Health, Liverpool John Moores UniversityGoogle Scholar
  79. Swerdlow NR, Braff DL, Geyer MA (2000) Animal models of deficient sensorimotor gating: what we know, what we think we know, and what we hope to know soon. Behav Pharmacol 11:185–204PubMedCrossRefGoogle Scholar
  80. Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacol (Berl) 156:194–215CrossRefGoogle Scholar
  81. Swerdlow NR, Stephany N, Wasserman LC, Talledo J, Shoemaker J, Auerbach PP (2003) Amphetamine effects on prepulse inhibition across-species: replication and parametric extension. Neuropsychopharmacology 28:640–650PubMedCrossRefGoogle Scholar
  82. Sykes EA (1986) Mescaline-induced motor impairment in rats, assessed by two different methods. Life Sci 39:1051–1058PubMedCrossRefGoogle Scholar
  83. Syslova K, Rambousek L, Kuzma M, Najmanova V, Bubenikova-Valesova V, Slamberova R, Kacer P (2011) Monitoring of dopamine and its metabolites in brain microdialysates: method combining freeze-drying with liquid chromatography-tandem mass spectrometry. J Chromatogr A 1218:3382–3391Google Scholar
  84. Thatcher RW, Krause PJ, Hrybyk M (1986) Cortico-cortical associations and EEG coherence: a two-compartmental model. Electroencephalogr Clin Neurophysiol 64:123–143PubMedCrossRefGoogle Scholar
  85. Thatcher RW, Walker RA, Giudice S (1987) Human cerebral hemispheres develop at different rates and ages. Science 236:1110–1113PubMedCrossRefGoogle Scholar
  86. Thatcher RW, Biver CJ, North DM (2003) Quantitative EEG and the Frye and Daubert standards of admissibility. Clin Electroencephalogr 34:39–53PubMedGoogle Scholar
  87. Thorlacius K, Borna C, Personne M (2008) Bromo-dragon fly–life-threatening drug. Can cause tissue necrosis as demonstrated by the first described case. Lakartidningen 105:1199–1200PubMedGoogle Scholar
  88. Tyls F, Palenicek T, Fujakova M, Kubesova A, Brunovsky M, Krajca V, Horacek J (2011) The effect of tryptamine hallucinogens on quantitative EEG and behavior in rats. Behav Pharmacol 22:e39Google Scholar
  89. Varty GB, Walters N, Cohen-Williams M, Carey GJ (2001) Comparison of apomorphine, amphetamine and dizocilpine disruptions of prepulse inhibition in inbred and outbred mice strains. Eur J Pharmacol 424:27–36PubMedCrossRefGoogle Scholar
  90. Vollenweider FX, Vontobel P, Hell D, Leenders KL (1999) 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man—a PET study with [11C]raclopride. Neuropsychopharmacology 20:424–433PubMedCrossRefGoogle Scholar
  91. Vyazovskiy V, Achermann P, Borbely AA, Tobler I (2004) Interhemispheric coherence of the sleep electroencephalogram in mice with congenital callosal dysgenesis. Neuroscience 124:481–488PubMedCrossRefGoogle Scholar
  92. Vyazovskiy VV, Ruijgrok G, Deboer T, Tobler I (2006) Running wheel accessibility affects the regional electroencephalogram during sleep in mice. Cereb Cortex 16:328–336PubMedCrossRefGoogle Scholar
  93. Vyazovskiy VV, Tobler I, Winsky-Sommerer R (2007) Alteration of behavior in mice by muscimol is associated with regional electroencephalogram synchronization. Neuroscience 147:833–841PubMedCrossRefGoogle Scholar
  94. Wecker JR, Ison JR (1986) Effects of motor-activity on the elicitation and modification of the startle reflex in rats. Anim Learn Behav 14:287–292CrossRefGoogle Scholar
  95. Wishaw IQ, Haun F, Kolb B (1999) Analysis of behavior in laboratory rodents. In: Windhorst U, Johansson H (eds) Modern techniques in neuroscience. Springer, Berlin, Germany, pp 1243–1275CrossRefGoogle Scholar
  96. Youdim MB, Riederer PF (2004) A review of the mechanisms and role of monoamine oxidase inhibitors in Parkinson's disease. Neurology 63:S32–S35PubMedCrossRefGoogle Scholar
  97. Young GA (1988) Relationship between amphetamine-induced effects on EEG power spectra and motor activity in rats. Pharmacol Biochem Behav 30:489–492PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Tomáš Páleníček
    • 1
    Email author
  • Michaela Fujáková
    • 1
    • 5
  • Martin Brunovský
    • 1
  • Jiří Horáček
    • 1
  • Ingmar Gorman
    • 1
  • Marie Balíková
    • 2
  • Lukáš Rambousek
    • 3
    • 4
  • Kamila Syslová
    • 3
  • Petr Kačer
    • 3
  • Petr Zach
    • 5
  • Věra Bubeníková-Valešová
    • 1
  • Filip Tylš
    • 1
    • 5
  • Anna Kubešová
    • 1
    • 5
  • Jana Puskarčíková
    • 1
    • 5
  • Cyril Höschl
    • 1
  1. 1.Prague Psychiatric CenterBohniceCzech Republic
  2. 2.Institute of Forensic Medicine and Toxicology, 1st Faculty of MedicineCharles University in PraguePrague 2Czech Republic
  3. 3.Institute of Chemical TechnologyPrague 6Czech Republic
  4. 4.Institute of PhysiologyAcademy of Sciences of the Czech RepublicPrague 4Czech Republic
  5. 5.3rd Faculty of MedicineCharles University in PraguePrague 10Czech Republic

Personalised recommendations