Psychopharmacology

, Volume 224, Issue 4, pp 501–509 | Cite as

Effects of mu opioid receptor antagonism on cognition in obese binge-eating individuals

  • Samuel R. Chamberlain
  • Karin Mogg
  • Brendan P. Bradley
  • Annelize Koch
  • Chris M. Dodds
  • Wenli X. Tao
  • Kay Maltby
  • Bhopinder Sarai
  • Antonella Napolitano
  • Duncan B. Richards
  • Edward T. Bullmore
  • Pradeep J. Nathan
Original Investigation

Abstract

Rationale

Translational research implicates the mu opioid neurochemical system in hedonic processing, but its role in dissociable high-level cognitive functions is not well understood. Binge-eating represents a useful model of ‘behavioural addiction’ for exploring this issue.

Objective

The aim of this study was to objectively assess the cognitive effects of a mu opioid receptor antagonist in obese individuals with binge-eating symptoms.

Methods

Adults with moderate to severe binge-eating and body mass index ≥30 kg/m2 received 4 weeks of treatment with a mu opioid receptor antagonist (GSK1521498) 2 or 5 mg per day, or placebo, in a double-blind randomised parallel design. Neuropsychological assessment was undertaken at baseline and endpoint to quantify processing bias for food stimuli (visual dot probe with 500- and 2,000-ms stimulus presentations and food Stroop tasks) and other distinct cognitive functions (N-back working memory, sustained attention, and power of attention tasks).

Results

GSK1521498 5 mg/day significantly reduced attentional bias for food cues on the visual dot probe task versus placebo (p = 0.042), with no effects detected on other cognitive tasks (all p > 0.10). The effect on attentional bias was limited to the longer stimulus duration condition in the higher dose cohort alone.

Conclusions

These findings support a central role for mu opioid receptors in aspects of attentional processing of food cues but militate against the notion of major modulatory influences of mu opioid receptors in working memory and sustained attention. The findings have implications for novel therapeutic directions and suggest that the role of different opioid receptors in cognition merits further research.

Keywords

Impulsivity Binge-eating Cognition Opiate Opioid Mu Mu-opioid 

References

  1. Anton RF, Drobes DJ et al (2004) Naltrexone effects on alcohol consumption in a clinical laboratory paradigm: temporal effects of drinking. Psychopharmacology (Berl) 173(1–2):32–40CrossRefGoogle Scholar
  2. Anton RF, O’Malley SS et al (2006) Combined pharmacotherapies and behavioral interventions for alcohol dependence: the COMBINE study: a randomized controlled trial. JAMA 295(17):2003–2017PubMedCrossRefGoogle Scholar
  3. Apfelbaum M, Mandenoff A (1981) Naltrexone suppresses hyperphagia induced in the rat by a highly palatable diet. Pharmacol Biochem Behav 15(1):89–91PubMedCrossRefGoogle Scholar
  4. Asad N, Karmaliani R et al (2010) Prevalence of suicidal thoughts and attempts among pregnant Pakistani women. Acta Obstet Gynecol Scand 89(12):1545–1551PubMedCrossRefGoogle Scholar
  5. Avena NM, Bocarsly ME et al (2011) Overlaps in the nosology of substance abuse and overeating: the translational implications of “food addiction”. Curr Drug Abuse Rev 4(3):133–139PubMedCrossRefGoogle Scholar
  6. Beck AT, Beamesderfer A (1974) Assessment of depression: the depression inventory. Mod Probl Pharmacopsychiatr 7:151–169Google Scholar
  7. Beck AT, Ward CH et al (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571PubMedCrossRefGoogle Scholar
  8. Bello NT, Patinkin ZW et al (2011) Opioidergic consequences of dietary-induced binge eating. Physiol Behav 104(1):98–104PubMedCrossRefGoogle Scholar
  9. Bencherif B, Guarda AS et al (2005) Regional mu-opioid receptor binding in insular cortex is decreased in bulimia nervosa and correlates inversely with fasting behavior. J Nucl Med 46(8):1349–1351PubMedGoogle Scholar
  10. Berrendero F, Robledo P et al (2010) Neurobiological mechanisms involved in nicotine dependence and reward: participation of the endogenous opioid system. Neurosci Biobehav Rev 35(2):220–231PubMedCrossRefGoogle Scholar
  11. Berridge KC (2009) ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol Behav 97(5):537–550PubMedCrossRefGoogle Scholar
  12. Brignell C, Griffiths T et al (2009) Attentional and approach biases for pictorial food cues. Influence of external eating. Appetite 52(2):299–306PubMedCrossRefGoogle Scholar
  13. Calitri R, Pothos EM et al (2010) Cognitive biases to healthy and unhealthy food words predict change in BMI. Obesity (Silver Spring) 18(12):2282–2287CrossRefGoogle Scholar
  14. Callicott JH, Ramsey NF et al (1998) Functional magnetic resonance imaging brain mapping in psychiatry: methodological issues illustrated in a study of working memory in schizophrenia. Neuropsychopharmacology 18(3):186–196PubMedCrossRefGoogle Scholar
  15. Chamberlain SR, Sahakian BJ (2007) The neuropsychiatry of impulsivity. Curr Opin Psychiatry 20(3):255–261PubMedGoogle Scholar
  16. Chamberlain, SR, Robbins TW et al (2010) Translational approaches to frontostriatal dysfunction in attention-deficit/hyperactivity disorder using a computerized neuropsychological battery. Biol PsychiatryGoogle Scholar
  17. Cohen RM, Cohen MR et al (1983) High-dose naloxone affects task performance in normal subjects. Psychiatry Res 8(2):127–136PubMedCrossRefGoogle Scholar
  18. Colantuoni C, Schwenker J, McCarthy J et al (2001) Excessive sugar intake alters binding to dopamine and mu-opioid receptors in the brain. Neuroreport 12:3549–3552Google Scholar
  19. Corwin RL, Avena NM et al (2011) Feeding and reward: perspectives from three rat models of binge eating. Physiol Behav 104(1):87–97PubMedCrossRefGoogle Scholar
  20. Cox WM, Fadardi JS et al (2006) The addiction-stroop test: theoretical considerations and procedural recommendations. Psychol Bull 132(3):443–476PubMedCrossRefGoogle Scholar
  21. Davis C, Carter JC (2009) Compulsive overeating as an addiction disorder. a review of theory and evidence. Appetite 53(1):1–8PubMedCrossRefGoogle Scholar
  22. Davis C, Zai C et al (2011) Opiates, overeating and obesity: a psychogenetic analysis. Int J Obes (Lond) 35(10):1347–1354CrossRefGoogle Scholar
  23. Evans RG, Ludbrook J (1990) Effects of mu-opioid receptor agonists on circulatory responses to simulated haemorrhage in conscious rabbits. Br J Pharmacol 100(3):421–426PubMedCrossRefGoogle Scholar
  24. Fernandez-Serrano MJ, Perez-Garcia M et al (2011) What are the specific vs. generalized effects of drugs of abuse on neuropsychological performance? Neurosci Biobehav Rev 35(3):377–406PubMedCrossRefGoogle Scholar
  25. Fulton S (2010) Appetite and reward. Front Neuroendocrinol 31(1):85–103PubMedCrossRefGoogle Scholar
  26. Giuliano C, Robbins TW, Nathan PJ, Bullmore ET, Everitt BJ (2012) Inhibition of opioid transmission at the μ-opioid receptor prevents both food seeking and binge-like eating. Neuropsychopharmacol (in press)Google Scholar
  27. Gladis MM, Wadden TA et al (1998) A comparison of two approaches to the assessment of binge eating in obesity. Int J Eat Disord 23(1):17–26PubMedCrossRefGoogle Scholar
  28. Goodman A (2008) Neurobiology of addiction. An integrative review. Biochem Pharmacol 75(1):266–322PubMedCrossRefGoogle Scholar
  29. Gormally J, Black S et al (1982) The assessment of binge eating severity among obese persons. Addict Behav 7(1):47–55PubMedCrossRefGoogle Scholar
  30. Grant JE, Brewer JA et al (2006) The neurobiology of substance and behavioral addictions. CNS Spectr 11(12):924–930PubMedGoogle Scholar
  31. Gruber SA, Silveri MM et al (2007) Neuropsychological consequences of opiate use. Neuropsychol Rev 17(3):299–315PubMedCrossRefGoogle Scholar
  32. Hatsukami DK, Mitchell JE et al (1986) Effect of naltrexone on mood and cognitive functioning among overweight men. Biol Psychiatry 21(3):293–300PubMedCrossRefGoogle Scholar
  33. Hepworth R, Mogg K et al (2010) Negative mood increases selective attention to food cues and subjective appetite. Appetite 54(1):134–142PubMedCrossRefGoogle Scholar
  34. Itoh J, Ukai M et al (1994) Dynorphin A-(1-13) potently improves the impairment of spontaneous alternation performance induced by the mu-selective opioid receptor agonist DAMGO in mice. J Pharmacol Exp Ther 269(1):15–21PubMedGoogle Scholar
  35. Jacobs-Pilipski MJ, Wilfley DE et al (2007) Placebo response in binge eating disorder. Int J Eat Disord 40(3):204–211PubMedCrossRefGoogle Scholar
  36. Jang CG, Lee SY et al (2003) Impaired water maze learning performance in mu-opioid receptor knockout mice. Brain Res Mol Brain Res 117(1):68–72PubMedCrossRefGoogle Scholar
  37. Kennedy DO, Scholey AB et al (2000) The dose-dependent cognitive effects of acute administration of Ginkgo biloba to healthy young volunteers. Psychopharmacology (Berl) 151(4):416–423CrossRefGoogle Scholar
  38. Le Merrer J, Becker JA et al (2009) Reward processing by the opioid system in the brain. Physiol Rev 89(4):1379–1412PubMedCrossRefGoogle Scholar
  39. Leventhal L, Kirkham TC et al (1995) Selective actions of central mu and kappa opioid antagonists upon sucrose intake in sham-fed rats. Brain Res 685(1–2):205–210PubMedCrossRefGoogle Scholar
  40. Marks-Kaufman R, Kanarek RB (1981) Modifications of nutrient selection induced by naloxone in rats. Psychopharmacology (Berl) 74(4):321–324CrossRefGoogle Scholar
  41. Martin del Campo AF, McMurray RG et al (1992) Effect of 12-hour infusion of naloxone on mood and cognition in normal male volunteers. Biol Psychiatry 32(4):344–353PubMedCrossRefGoogle Scholar
  42. McClure CK, Patrick TE et al (2011) Birth outcomes following self-inflicted poisoning during pregnancy, California, 2000 to 2004. J Obstet Gynecol Neonatal Nurs 40(3):292–301PubMedCrossRefGoogle Scholar
  43. Milner A, McClure R et al (2011) Globalisation and suicide: an empirical investigation in 35 countries over the period 1980–2006. Health Place 17(4):996–1003PubMedCrossRefGoogle Scholar
  44. Milner A, McClure R et al (2012) Socio-economic determinants of suicide: an ecological analysis of 35 countries. Soc Psychiatry Psychiatr Epidemiol 47(1):19–27PubMedCrossRefGoogle Scholar
  45. Mitchell JE, Laine DE et al (1986) Naloxone but not CCK-8 may attenuate binge-eating behavior in patients with the bulimia syndrome. Biol Psychiatry 21(14):1399–1406PubMedCrossRefGoogle Scholar
  46. Mitchell JE, Morley JE et al (1987) High-dose naltrexone therapy and dietary counseling for obesity. Biol Psychiatry 22(1):35–42PubMedCrossRefGoogle Scholar
  47. Napolitano A, Miller SR et al (2012) Prediction of weight loss and weight regain following dietary, lifestyle and pharmacological intervention. Clin Pharmacol Ther 91(6):1027–1034PubMedCrossRefGoogle Scholar
  48. Nathan PJ, Bullmore ET (2009) From taste hedonics to motivational drive: central mu-opioid receptors and binge-eating behaviour. Int J Neuropsychopharmacol 12(7):995–1008PubMedCrossRefGoogle Scholar
  49. Nathan PJ et al (2011a) Multiple-dose safety, pharmacokinetics and pharmacodynamics of the mu-opioid receptor inverse agonist GSK1521498. J Clin Pharmacol. doi:10.1177/0091270011421785
  50. Nathan PJ, O’Neill BV et al (2011b) Opioid receptor modulation of hedonic taste preference and food intake: a single-dose safety, pharmacokinetic, and pharmacodynamic investigation with GSK1521498, a novel μ-opioid receptor inverse agonist. J Clin Pharmacol 52(4):464–474PubMedGoogle Scholar
  51. Nathan PJ, O’Neill BV et al (2011c) The effects of the dopamine D3 receptor antagonist GSK598809 on attentional bias to palatable food cues in overweight and obese subjects. Int J Neuropsychopharmacol 1–13Google Scholar
  52. Quednow BB, Csomor PA et al (2008) Sensorimotor gating and attentional set-shifting are improved by the mu-opioid receptor agonist morphine in healthy human volunteers. Int J Neuropsychopharmacol 11(5):655–669PubMedCrossRefGoogle Scholar
  53. Rabiner EA, Beaver J et al (2011) Pharmacological differentiation of opioid receptor antagonists by molecular and functional imaging of target occupancy and food reward-related brain activation in humans. Mol Psychiatry 16(8):826–835, 785PubMedCrossRefGoogle Scholar
  54. Riba J, Rodriguez-Fornells A et al (2005) Noradrenergic stimulation enhances human action monitoring. J Neurosci 25(17):4370–4374PubMedCrossRefGoogle Scholar
  55. Robbins TW, Arnsten AF (2009) The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci 32:267–287PubMedCrossRefGoogle Scholar
  56. Rosner S, Hackl-Herrwerth A et al (2010) Opioid antagonists for alcohol dependence. Cochrane Database Syst Rev (12):CD001867Google Scholar
  57. Sanger DJ, McCarthy PS (1981) Increased food and water intake produced in rats by opiate receptor agonists. Psychopharmacology (Berl) 74(3):217–220CrossRefGoogle Scholar
  58. Shah J, Wesnes KA et al (2006) Effects of food on the single-dose pharmacokinetics/pharmacodynamics of tizanidine capsules and tablets in healthy volunteers. Clin Ther 28(9):1308–1317PubMedCrossRefGoogle Scholar
  59. Spiegel TA, Stunkard AJ et al (1987) Effect of naltrexone on food intake, hunger, and satiety in obese men. Physiol Behav 40(2):135–141PubMedCrossRefGoogle Scholar
  60. Striegel-Moore RH, Cachelin FM et al (2001) Comparison of binge eating disorder and bulimia nervosa in a community sample. Int J Eat Disord 29(2):157–165PubMedCrossRefGoogle Scholar
  61. Stunkard A (1990) A description of eating disorders in 1932. Am J Psychiatry 147(3):263–268PubMedGoogle Scholar
  62. Stunkard AJ, Wadden TA (1992) Psychological aspects of severe obesity. Am J Clin Nutr 55(2 Suppl):524S–532SPubMedGoogle Scholar
  63. Swanson SA, Crow SJ et al (2011) Prevalence and correlates of eating disorders in adolescents: results from the national comorbidity survey replication adolescent supplement. Arch Gen Psychiatry 68(7):714–723PubMedCrossRefGoogle Scholar
  64. Ukai M, Watanabe Y et al (2000) Effects of endomorphins-1 and -2, endogenous mu-opioid receptor agonists, on spontaneous alternation performance in mice. Eur J Pharmacol 395(3):211–215PubMedCrossRefGoogle Scholar
  65. Wagner JJ, Terman GW et al (1993) Endogenous dynorphins inhibit excitatory neurotransmission and block LTP induction in the hippocampus. Nature 363(6428):451–454PubMedCrossRefGoogle Scholar
  66. Will MJ, Franzblau EB et al (2003) Nucleus accumbens mu-opioids regulate intake of a high-fat diet via activation of a distributed brain network. J Neurosci 23(7):2882–2888PubMedGoogle Scholar
  67. Xie CW, Morrisett RA et al (1992) Mu opioid receptor-mediated modulation of synaptic currents in dentate granule cells of rat hippocampus. J Neurophysiol 68(4):1113–1120PubMedGoogle Scholar
  68. Yeomans MR, Gray RW (2002) Opioid peptides and the control of human ingestive behaviour. Neurosci Biobehav Rev 26(6):713–728PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Samuel R. Chamberlain
    • 1
    • 2
    • 3
  • Karin Mogg
    • 4
  • Brendan P. Bradley
    • 4
  • Annelize Koch
    • 1
  • Chris M. Dodds
    • 1
  • Wenli X. Tao
    • 1
  • Kay Maltby
    • 1
  • Bhopinder Sarai
    • 1
  • Antonella Napolitano
    • 1
  • Duncan B. Richards
    • 1
  • Edward T. Bullmore
    • 1
    • 2
    • 3
  • Pradeep J. Nathan
    • 1
    • 2
  1. 1.Clinical Unit Cambridge, GlaxoSmithKlineAddenbrooke’s HospitalCambridgeUK
  2. 2.Department of Psychiatry, Level E4, Addenbrooke’s HospitalUniversity of CambridgeCambridgeUK
  3. 3.Cambridgeshire and Peterborough NHS Foundation TrustCambridgeUK
  4. 4.Department of PsychologyUniversity of SouthamptonSouthamptonUK

Personalised recommendations