Skip to main content

Advertisement

Log in

Rewarding and incentive motivational effects of excitatory amino acid receptor antagonists into the median raphe and adjacent regions of the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The motivational process that regulates approach behavior toward salient distal stimuli (i.e., incentive motivation) plays a key role in voluntary behavior and motivational disorders such as addiction. This process may be mediated by many neurotransmitter systems and a network of many brain structures, including the median and dorsal raphe regions (MR and DR, respectively).

Objective

We sought to examine whether the blockade of excitatory amino acid receptors in the MR and DR is rewarding, using intracranial self-administration, and whether the self-administration effect can be explained by drug’s effectiveness to enhance incentive motivation, using a visual sensation seeking procedure.

Results

Rats learned to self-administer the AMPA receptor antagonist ZK 200775 into the vicinity of the MR, DR, or medial oral pontine reticular regions, but not the ventral tegmental area. The NMDA receptor antagonist AP5 was also self-administered into the MR, while it was not readily self-administered into other regions. When ZK 200775 was noncontingently administered into the MR, rats markedly increased approach responses rewarded by brief illumination of a light stimulus. In addition, contingent administration of ZK 200775 into the MR induced a conditioning effect on approach responses.

Conclusions

Rats self-administer excitatory amino acid receptor antagonists into the MR and adjacent regions. Self-administration effect of AMPA receptor antagonists into the MR can be largely explained by the manipulation’s properties to invigorate ongoing approach behavior and induces conditioned approach. Glutamatergic afferents to the median raphe and adjacent regions appear to tonically suppress incentive-motivational processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Berridge KC (1996) Food reward: brain substrate of wanting and liking. Neurosci Biobehav Rev 20:1–25

    Article  PubMed  CAS  Google Scholar 

  • Bindra D (1968) Neuropsychological interpretation of the effects of drive and incentive-motivation on general activity and instrumental behavior. Psychol Rev 75:1–22

    Article  Google Scholar 

  • Bindra D (1969) The interrelated mechanisms of reinforcement and motivation, and the nature of their influence on response. In: Arnold WJ, Levine D (eds) Nebraska Symposium on Motivation. University of Nebraska Press, Lincoln, pp 1–33

    Google Scholar 

  • Bolles RC (1972) Reinforcement, expectancy, and learning. Psychol Rev 79:394–409

    Article  Google Scholar 

  • Chaudhri N, Caggiula AR, Donny EC, Palmatier MI, Liu X, Sved AF (2006) Complex interactions between nicotine and nonpharmacological stimuli reveal multiple roles for nicotine in reinforcement. Psychopharmacology (Berl) 184:353–366

    Article  CAS  Google Scholar 

  • Cools R, Roberts AC, Robbins TW (2008) Serotoninergic regulation of emotional and behavioural control processes. Trends in cognitive sciences 12:31–40

    Article  PubMed  Google Scholar 

  • David V, Durkin TP, Cazala P (1998) Rewarding effects elicited by the microinjection of either AMPA or NMDA glutamatergic antagonists into the ventral tegmental area revealed by an intracranial self-administration paradigm in mice. Eur J Neurosci 10:1394–1402

    Article  PubMed  CAS  Google Scholar 

  • Daw ND, Kakade S, Dayan P (2002) Opponent interactions between serotonin and dopamine. Neural Netw 15:603–616

    Article  PubMed  Google Scholar 

  • Dayan P, Huys QJM (2009) Serotonin in affective control. Annu Rev Neurosci 32:95–126

    Article  PubMed  CAS  Google Scholar 

  • Deakin JFW (1983) Roles of serotonergic systems in escape, avoidance and other behaviour. In: Cooper SJ (ed) Theory in psychopharmacology. Academic Press, London, pp 149–193

    Google Scholar 

  • Donny EC, Chaudhri N, Caggiula AR, Evans-Martin FF, Booth S, Gharib MA, Clements LA, Sved AF (2003) Operant responding for a visual reinforcer in rats is enhanced by noncontingent nicotine: implications for nicotine self-administration and reinforcement. Psychopharmacology (Berl) 169:68–76

    Article  CAS  Google Scholar 

  • Fletcher PJ, Ming Z-H, Higgins GA (1993) Conditioned place preference induced by microinjection of 8-OH-DPAT into the dorsal or median raphe nucleus. Psychopharmacology 113:31–36

    Article  PubMed  CAS  Google Scholar 

  • Fletcher PJ, Tampakeras M, Yeomans JS (1995) Median raphe injections of 8-OH-DPAT lower frequency thresholds for lateral hypothalamic self-stimulation. Pharmacol Biochem Behav 52:65–71

    Article  PubMed  CAS  Google Scholar 

  • Fletcher PJ, Korth KM, Chambers JW (1999) Selective destruction of brain serotonin neurons by 5,7-dihydroxytryptamine increases responding for a conditioned reward. Psychopharmacology (Berl) 147:291–299

    Article  CAS  Google Scholar 

  • Ikemoto S (2005) The supramammillary nucleus mediates primary reinforcement via GABA(A) receptors. Neuropsychopharmacology 30:1088–1095

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex. Brain Res Rev 56:27–78

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S (2010) Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory. Neurosci Biobehav Rev 35:129–150

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S, Panksepp J (1994) The relationship between self-stimulation and sniffing in rats: does a common brain system mediate these behaviors? Behav Brain Res 61:143–162

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S, Panksepp J (1996) Dissociations between appetitive and consummatory responses by pharmacological manipulations of reward-relevant brain regions. Behav Neurosci 110:331–345

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S, Sharpe LG (2001) A head-attachable device for injecting nanoliter volumes of drug solutions into brain sites of freely moving rats. J Neurosci Methods 110:135–140

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S, Wise RA (2002) Rewarding effects of the cholinergic agents carbachol and neostigmine in the posterior ventral tegmental area. J Neurosci 22:9895–9904

    PubMed  CAS  Google Scholar 

  • Ikemoto S, Wise RA (2004) Mapping of chemical trigger zones for reward. Neuropharmacology 47:190–201

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S, Glazier BS, Murphy JM, McBride WJ (1997) Role of dopamine D1 and D2 receptors in the nucleus accumbens in mediating reward. J Neurosci 17:8580–8587

    PubMed  CAS  Google Scholar 

  • Ikemoto S, Qin M, Liu ZH (2005) The functional divide for primary reinforcement of d-amphetamine lies between the medial and lateral ventral striatum: is the division of the accumbens core, shell and olfactory tubercle valid? J Neurosci 25:5061–5065

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S, Qin M, Liu ZH (2006) Primary reinforcing effects of nicotine are triggered from multiple regions both inside and outside the ventral tegmental area. J Neurosci 26:723–730

    Article  PubMed  CAS  Google Scholar 

  • Jhou T (2005) Neural mechanisms of freezing and passive aversive behaviors. J Comp Neurol 493:111–114

    Article  PubMed  CAS  Google Scholar 

  • Jhou TC, Fields HL, Baxter MG, Saper CB, Holland PC (2009a) The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 61:786–800

    Article  PubMed  CAS  Google Scholar 

  • Jhou TC, Geisler S, Marinelli M, Degarmo BA, Zahm DS (2009b) The mesopontine rostromedial tegmental nucleus: a structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. J Comp Neurol 513:566–596

    Article  PubMed  Google Scholar 

  • Kapur S, Remington G (1996) Serotonin-dopamine interaction and its relevance to schizophrenia. Am J Psychiatry 153:466–476

    PubMed  CAS  Google Scholar 

  • Kaufling J, Veinante P, Pawlowski SA, Freund-Mercier M-J, Barrot M (2009) Afferents to the GABAergic tail of the ventral tegmental area in the rat. J Comp Neurol 513:597–621

    Article  PubMed  Google Scholar 

  • Kinney GG, Kocsis B, Vertes RP (1994) Injections of excitatory amino acid antagonists into the median raphe nucleus produce hippocampal theta rhythm in the urethane-anesthetized rat. Brain Res 654:96–104

    Article  PubMed  CAS  Google Scholar 

  • Kish GB (1966) Studies of sensory reinforcement. In: Honing WK (ed) Operant behavior: areas of research and application. Appleton-Century-Crofts, New York, pp 109–159

    Google Scholar 

  • Le AD, Funk D, Harding S, Juzytsch W, Li Z, Fletcher PJ (2008) Intra-median raphe nucleus (MRN) infusions of muscimol, a GABA-A receptor agonist, reinstate alcohol seeking in rats: role of impulsivity and reward. Psychopharmacology (Berl) 195:605–615

    Google Scholar 

  • LeDoux J (2012) Rethinking the emotional brain. Neuron 73:653–676

    Article  PubMed  CAS  Google Scholar 

  • Liu ZH, Ikemoto S (2007) The midbrain raphe nuclei mediate primary reinforcement via GABA(A) receptors. Eur J Neurosci 25:735–743

    Article  PubMed  CAS  Google Scholar 

  • Lucki I (1998) The spectrum of behaviors influenced by serotonin. Biol Psychiatry 44:151–162

    Article  PubMed  CAS  Google Scholar 

  • McBride WJ, Murphy JM, Ikemoto S (1999) Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 101:129–152

    Article  PubMed  CAS  Google Scholar 

  • McDonald JH (2009) Handbook of biological statistics, 2nd edn. Sparky House, Baltimore

    Google Scholar 

  • Mokler DJ, Dugal JR, Hoffman JM, Morgane PJ (2009) Functional interrelations between nucleus raphé dorsalis and nucleus raphé medianus: a dual probe microdialysis study of glutamate-stimulated serotonin release. Brain Res Bull 78:132–138

    Article  PubMed  CAS  Google Scholar 

  • National Research Council (2011) Guide for the care and use of laboratory animals. The National Academies Press, Washington, D.C

    Google Scholar 

  • Palmatier M, Evans-Martin F, Hoffman A, Caggiula A, Chaudhri N, Donny E, Liu X, Booth S, Gharib M, Craven L, Sved A (2006) Dissociating the primary reinforcing and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers. Psychopharmacology 184:391–400

    Article  PubMed  CAS  Google Scholar 

  • Panksepp J, Moskal J (2008) Dopamine and SEEKING: subcortical “reward” systems and appetitive urges. In: Elliot A (ed) Handbook of approach and avoidance motivation. Taylor & Francis Group, LLC, New York, pp 67–87

    Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates, 5th edn. Elsevier, Burlington

    Google Scholar 

  • Perrotti LI, Bolanos CA, Choi KH, Russo SJ, Edwards S, Ulery PG, Wallace DL, Self DW, Nestler EJ, Barrot M (2005) DeltaFosB accumulates in a GABAergic cell population in the posterior tail of the ventral tegmental area after psychostimulant treatment. Eur J Neurosci 21:2817–2824

    Article  PubMed  Google Scholar 

  • Robbins TW, Everitt BJ (1982) Functional studies of the central catecholamines. Int Rev Neurobiol 23:303–365

    Article  PubMed  CAS  Google Scholar 

  • Shin R, Ikemoto S (2010) The GABA(B) receptor agonist baclofen administered into the median and dorsal raphe nuclei is rewarding as shown by intracranial self-administration and conditioned place preference in rats. Psychopharmacology 208:545–554

    Article  PubMed  CAS  Google Scholar 

  • Shin R, Qin M, Liu Z-H, Ikemoto S (2008) Intracranial self-administration of MDMA into the ventral striatum of the rat: differential roles of the nucleus accumbens shell, core and olfactory tubercle. Psychopharmacology 198:261–270

    Article  PubMed  CAS  Google Scholar 

  • Shin R, Cao J, Webb SM, Ikemoto S (2010) Amphetamine administration into the ventral striatum facilitates behavioral interaction with unconditioned visual signals in rats. PLoS One 5:e8741

    Article  PubMed  Google Scholar 

  • Sorge R, Pierre V, Clarke P (2009) Facilitation of intravenous nicotine self-administration in rats by a motivationally neutral sensory stimulus. Psychopharmacology 207:191–200

    Article  PubMed  CAS  Google Scholar 

  • Soubrie P (1986) Reconciling the role of central serotonin neurons in human and animal behavior. Behav Brain Sci 9:319–364

    Article  Google Scholar 

  • Stewart J (1960) Reinforcing effects of light as a function of intensity and reinforcement schedule. J Comp Physiol Psychol 53:187–193

    Article  PubMed  CAS  Google Scholar 

  • Stewart J, de Wit H, Eikelboom R (1984) Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychol Rev 91:251–268

    Article  PubMed  CAS  Google Scholar 

  • Takahashi A, Shimamoto A, Boyson CO, DeBold JF, Miczek KA (2010) GABAB receptor modulation of serotonin neurons in the dorsal raphe nucleus and escalation of aggression in mice. J Neurosci 30:11771–11780

    Article  PubMed  CAS  Google Scholar 

  • Tao R, Auerbach SB (2000) Regulation of serotonin release by GABA and excitatory amino acids. J Psychopharmacol 14:100–113

    Article  PubMed  CAS  Google Scholar 

  • Tao R, Ma Z, Auerbach SB (1997) Influence of AMPA/kainate receptors on extracellular 5-hydroxytryptamine in rat midbrain raphe and forebrain. Br J Pharmacol 121:1707–1715

    Article  PubMed  CAS  Google Scholar 

  • Trevino M, Aguilar-Garnica E, Jendritza P, Li S-B, Oviedo T, Khr G, De Marco R (2011) Discrimination learning with variable stimulus ‘salience’. International Archives of Medicine 4:26–26

    Article  PubMed  Google Scholar 

  • Turski L, Huth A, Sheardown M, McDonald F, Neuhaus R, Schneider HH, Dirnagl U, Wiegand F, Jacobsen P, Ottow E (1998) ZK200775: a phosphonate quinoxalinedione AMPA antagonist for neuroprotection in stroke and trauma. Proc Natl Acad Sci 95:10960–10965

    Article  PubMed  CAS  Google Scholar 

  • Varga V, Sik A, Freund TF, Kocsis B (2002) GABA(B) receptors in the median raphe nucleus: distribution and role in the serotonergic control of hippocampal activity. Neuroscience 109:119–132

    Article  PubMed  CAS  Google Scholar 

  • Vollrath-Smith FR, Shin R, Ikemoto S (2012) Synergistic interaction between baclofen administration into the median raphe nucleus and inconsequential visual stimuli on investigatory behavior of rats. Psychopharmacology 220:15–25

    Article  PubMed  CAS  Google Scholar 

  • Wirtshafter D, Klitenick MA (1989) Comparative studies of locomotor behavior following microinjections of muscimol into various sites in the paramedian tegmentum. Pharmacol Biochem Behav 32:625–628

    Article  PubMed  CAS  Google Scholar 

  • Wirtshafter D, Trifunovic R, Krebs JC (1989) Behavioral and biochemical evidence for a functional role of excitatory amino acids in the median raphe nucleus. Brain research 482:225–234

    Article  PubMed  CAS  Google Scholar 

  • Wirtshafter D, Stratford TR, Pitzer MR (1993) Studies on the behavioral activation produced by stimulation of GABAB receptors in the median raphe nucleus. Behav Brain Res 59:83–93

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health. We would like to thank Drs. Anton Ilango and Dong Wang for their comments on earlier versions of the manuscript.

Disclosure/conflict of interest

We do not have any conflict of interest or financial compensation to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Ikemoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webb, S.M., Vollrath-Smith, F.R., Shin, R. et al. Rewarding and incentive motivational effects of excitatory amino acid receptor antagonists into the median raphe and adjacent regions of the rat. Psychopharmacology 224, 401–412 (2012). https://doi.org/10.1007/s00213-012-2759-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2759-0

Keywords

Navigation