Skip to main content

Advertisement

Log in

Fronto-temporal-mesolimbic gene expression and heritable differences in amphetamine-disrupted sensorimotor gating in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Differences in sensitivity to the prepulse inhibition (PPI)-disruptive effects of D2-family agonists in Sprague–Dawley (SD) vs. Long Evans (LE) rats are heritable, reflect differential activation of DA signaling in the nucleus accumbens (NAC), and are associated with differences in expression of specific NAC genes. These differences may inform us about the biology of PPI deficits in disorders such as schizophrenia.

Objectives

After confirming these strain-based PPI differences, we measured expression of four genes in NAC and other regions that regulate PPI: medial prefrontal cortex and ventral hippocampus (VH).

Methods

Startle and PPI were assessed in SD and LE rats administered d-amphetamine (0 vs. 4.5 mg/kg, sc). Two weeks later, brain tissue was processed for comt, nrg1, grid2, and csnk1e expression; blood comt expression was also tested.

Results

Data confirmed expected PPI phenotypes. Gene expression levels differed across strains, sexes, and brain regions, with LE > SD expression in most genes and regions, and female > male expression for all NAC genes. Within any brain region, expression of the four genes was highly inter-correlated; across regions, correlations were less robust, reflecting distinct strain- or sex-based subgroups. PPI amphetamine sensitivity at 120 ms correlated significantly with NAC nrg1 expression, while amphetamine sensitivity for 30 ms PPI and startle magnitude correlated significantly with VH nrg1 and blood comt expression.

Conclusions

Rat strains differing in a schizophrenia-linked phenotype also differ in expression levels of genes associated both with that phenotype, and with schizophrenia, within brain regions associated with that phenotype and schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anokhin AP, Heath AC, Myers E, Ralano A, Wood S (2003) Genetic influences on prepulse inhibition of startle reflex in humans. Neurosci Lett 353:45–48

    Article  PubMed  CAS  Google Scholar 

  • Bentler PM (1990) Comparative fit indexes in structural models. Psychol Bull 107:238–246

    Article  PubMed  CAS  Google Scholar 

  • Bitsios P, Giakoumaki SG, Frangou S (2005) The effects of dopamine agonists on prepulse inhibition in healthy men depend on baseline PPI values. J Psychopharmacol 182:144–152

    Article  CAS  Google Scholar 

  • Bitsios P, Giakoumaki SG, Theou K, Frangou S (2006) Increased prepulse inhibition of the acoustic startle response is associated with better strategy formation and execution times in healthy males. Neuropsychologia 44:2494–2499

    Article  PubMed  Google Scholar 

  • Bollen KA (1989) Structural equations with latent variables. Wiley, New Jersey

    Google Scholar 

  • Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15:339–343

    Article  PubMed  CAS  Google Scholar 

  • Bryant CD, Parker CC, Zhou L, Olker C, Chandrasekaran RY, Wager TT, Bolivar VJ, Loudon AS, Vitaterna MH, Turek FW, Palmer AA (2011) Csnk1e is a genetic regulator of sensitivity to psychostimulants and opioids. Neuropsychopharmacol 37:1026–1035. doi:10.1038/npp.2011.287

    Article  Google Scholar 

  • Cheong JK, Virshup DM (2010) Casein kinase 1: complexity in the family. Int J Biochem Cell Biol 43:465–469

    Article  PubMed  Google Scholar 

  • Christakou A, Robbins TW, Everitt BJ (2004) Prefrontal cortical-ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function. J Neurosci 24:773–780

    Article  PubMed  CAS  Google Scholar 

  • Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT, Colantuoni EA, Elkahloun AG, Herman MM, Weinberger DR, Kleinman JE (2011) Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nat 478:519–523

    Article  CAS  Google Scholar 

  • Doughty ML, De Jager PL, Korsmeyer SJ, Heintz N (2000) Neurodegeneration in Lurcher mice occurs via multiple cell death pathways. J Neurosci 20:3687–3694

    PubMed  CAS  Google Scholar 

  • Frankland PW, Wang Y, Rosner B, Shimizu T, Balleine BW, Dykens EM, Ornitz EM, Silva AJ (2004) Sensorimotor gating abnormalities in young males with fragile X syndrome and Fmr1-knockout mice. Mol Psychiatry 9:417–425

    Article  PubMed  CAS  Google Scholar 

  • Golimbet VE, Alfimova MV, Gritsenko IK, Ebstein RP (2007) Relationship between dopamine system genes and extraversion and novelty seeking. Neurosci Behav Physiol 37:601–606

    Article  PubMed  CAS  Google Scholar 

  • Graham F (1975) The more or less startling effects of weak prestimuli. Psychophysiol 12:238–248

    Article  CAS  Google Scholar 

  • Greenwood TA, Lazzeroni LC, Murray SS, Cadenhead KS, Calkins ME, Dobie DJ, Green MF, Gur RE, Gur RC, Hardiman G, Kelsoe JR, Leonard S, Light GA, Nuechterlein KH, Olincy A, Radant AD, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Freedman R, Braff DL (2011) Analysis of 94 candidate genes and twelve endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. Am J Psychiatry 168:930–946

    Article  PubMed  Google Scholar 

  • Greenwood TA, Light GA, Swerdlow NR, Radant AD, Braff DL (2012) Association analysis of 94 candidate genes and schizophrenia-related endophenotypes. PLoS Genet 7:e1002134

    Google Scholar 

  • Hu LT, Bentler PM (1999) Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct Equ Modeling 6:1–55

    Article  Google Scholar 

  • Hutchison KE, Swift R (1999) Effect of d-amphetamine on prepulse inhibition of the startle reflex in humans. Psychopharmacol 143:394–400

    Article  CAS  Google Scholar 

  • Hutchison KE, Wood MD, Swift R (1999) Personality factors moderate subjective and psychophysiological responses to d-amphetamine in humans. Exp Clin Psychopharmacol 7:493–501

    Article  PubMed  CAS  Google Scholar 

  • Kakegawa W, Miyoshi Y, Hamase K, Matsuda S, Matsuda K, Kohda K, Emi K, Motohashi J, Konno R, Zaitsu K, Yuzaki M (2011) d-Serine regulates cerebellar LTD and motor coordination through the δ2 glutamate receptor. Nat Neurosci 14:603–611

    Article  PubMed  CAS  Google Scholar 

  • Kao WT, Wang Y, Kleinman JE, Lipska BK, Hyde TM, Weinberger DR, Law AJ (2010) Common genetic variation in Neuregulin 3 (NRG3) influences risk for schizophrenia and impacts NRG3 expression in human brain. Proc Natl Acad Sci U S A 107:15619–15624

    Article  PubMed  CAS  Google Scholar 

  • Kohda K, Kamiya Y, Matsuda S, Kato K, Umemori H, Yuzaki M (2003) Heteromer formation of delta2 glutamate receptors with AMPA or kainate receptors. Brain Res Mol Brain Res 110:27–37

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Mulligan MK, Wang X, Miles MF, Lu L, Williams RW (2010) A transposon in Comt generates mRNA variants and causes widespread expression and behavioral differences among mice. PLoS One 5:e12181

    Article  PubMed  Google Scholar 

  • Ly CD, Roche KW, Lee HK, Wenthold RJ (2002) Identification of rat EMAP, a delta-glutamate receptor binding protein. Biochem Biophys Res Commun 291:85–90

    Article  PubMed  CAS  Google Scholar 

  • Muthén LK, Muthén BO (1998-2010) Mplus User’s Guide. Sixth Edition. Author, Los Angeles

  • Palmer AA, Verbitsky M, Suresh R, Kamens HM, Reed CL, Li N, Burkhart-Kasch S, McKinnon CS, Belknap JK, Gilliam TC, Phillips TJ (2005) Gene expression differences in mice divergently selected for methamphetamine sensitivity. Mamm Genome 16:291–305

    Article  PubMed  CAS  Google Scholar 

  • Qu Y, Saint Marie RL, Breier MR, Ko D, Stouffer D, Parsons LH, Swerdlow NR (2009) Neural basis for a heritable phenotype: Differences in the effects of apomorphine on startle gating and ventral pallidal GABA efflux in male Sprague Dawley and Long Evans rats. Psychopharmacol 207:271–280

    Article  CAS  Google Scholar 

  • Quednow BB, Wagner M, Mössner R, Maier W, Kühn KU (2010) Sensorimotor gating of schizophrenia patients depends on catechol O-methyltransferase Val158Met polymorphism. Schizophr Bull 36:341–346

    Article  PubMed  Google Scholar 

  • Roussos P, Giakoumaki SG, Rogdaki M, Pavlakis S, Frangou S, Bitsios P (2008) Prepulse inhibition of the startle reflex depends on the catechol O-methyltransferase Val158Met gene polymorphism. Psychol Med 38:1651–1658

    Article  PubMed  CAS  Google Scholar 

  • Shilling PD, Saint Marie RL, Shoemaker JM, Swerdlow NR (2008) Strain differences in the gating-disruptive effects of apomorphine: relationship to gene expression in nucleus accumbens signaling pathways. Biol Psychiatry 63:748–758

    Article  PubMed  CAS  Google Scholar 

  • Sobin C, Kiley-Brabeck K, Karayiorgou M (2005) Lower prepulse inhibition in children with the 22q11 deletion syndrome. Am J Psychiatry 162:1090–1099

    Article  PubMed  Google Scholar 

  • Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Petursson H, Stefansson K (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71:877–892

    Article  PubMed  Google Scholar 

  • Swerdlow NR, Auerbach P, Monroe SM, Hartson H, Geyer MA, Braff DL (1993) Men are more inhibited than women by weak prepulses. Biol Psychiatry 34:253–260

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Braff DL, Taaid N, Geyer MA (1994) Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch Gen Psychiatry 51:139–154

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Filion D, Geyer MA, Braff DL (1995a) "Normal" personality correlates of sensorimotor, cognitive and visuospatial gating. Biol Psychiatry 37:286–299

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Paulsen J, Braff DL, Butters N, Geyer MA, Swenson MR (1995b) Impaired prepulse inhibition of acoustic and tactile startle response in patients with Huntington's disease. J Neurol Neurosurg Psychiatry 58:192–200

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Geyer MA, Braff DL (2001a) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology (Berl) 156:194–215

    Article  CAS  Google Scholar 

  • Swerdlow NR, Platten A, Kim YK, Gaudet I, Shoemaker J, Pitcher L, Auerbach P (2001b) Sensitivity to the dopaminergic regulation of prepulse inhibition in rats: evidence for genetic, but not environmental determinants. Pharmacol Biochem Behav 70:219–226

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Shoemaker JM, Pitcher L, Platten A, Kuczenski P, Eleey CC, Auerbach P (2002) Genetic differences in startle gating-disruptive effects of apomorphine: evidence for central mediation. Behav Neurosci 116:682–690

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Shoemaker JM, Platten A, Pitcher L, Goins J, Crain S (2003a) Heritable differences in the effects of amphetamine but not DOI on startle gating in albino and hooded outbred rat strains. Pharmacol Biochem Behav 75:191–197

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Stephany N, Wasserman LC, Talledo J, Shoemaker J, Auerbach PP (2003b) Amphetamine effects on prepulse inhibition across species: replication and parametric extension. Neuropsychopharmacol 28:640–650

    Article  CAS  Google Scholar 

  • Swerdlow NR, Shoemaker JM, Auerbach PP, Pitcher L, Goins J, Platten A (2004a) Heritable differences in the dopaminergic regulation of sensorimotor gating. II. Temporal, pharmacologic and generational analyses of apomorphine effects on prepulse inhibition. Psychopharmacol 174:452–462

    Article  CAS  Google Scholar 

  • Swerdlow NR, Shoemaker JM, Crain S, Goins J, Onozuka K, Auerbach PP (2004b) Sensitivity to drug effects on prepulse inhibition in inbred and outbred rat strains. Pharmacol Biochem Behav 77:291–302

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Shoemaker JM, Platten A, Pitcher L, Goins J, Auerbach PP (2004c) Heritable differences in the dopaminergic regulation of sensorimotor gating. I. Apomorphine effects on startle gating in albino and hooded outbred rat strains and their F1 and N2 progeny. Psychopharmacol 174:441–451

    Article  CAS  Google Scholar 

  • Swerdlow NR, Kuczenski R, Goins JC, Crain SK, Ma LT, Bongiovanni MJ, Shoemaker JM (2005) Neurochemical analysis of rat strain differences in the startle gating-disruptive effects of dopamine agonists. Pharmacol Biochem Behav 80:203–211

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Krupin AS, Bongiovanni MJ, Shoemaker JM, Goins JC, Hammer RP Jr (2006) Heritable differences in the dopaminergic regulation of behavior in rats: relationship to D2-like receptor G-protein function. Neuropsychopharmacol 31:721–729

    Article  CAS  Google Scholar 

  • Swerdlow NR, Shoemaker JM, Bongiovanni MJ, Neary AC, Tochen LS, Saint Marie RL (2007) Strain differences in the disruption of prepulse inhibition of startle after systemic and intra-accumbens amphetamine administration. Pharmacol Biochem Behav 87:1–10

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL (2008) Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacol 199:331–388

    Article  CAS  Google Scholar 

  • Swerdlow NR, Breier MR, Saint Marie RL (2011) Probing the molecular basis for an inherited sensitivity to the startle-gating disruptive effects of apomorphine in rats. Psychopharmacol 216:401–410

    Article  CAS  Google Scholar 

  • Takatsuki K, Kawahara S, Mishina M, Kirino Y (2005) Characterization of hippocampal theta rhythm in wild-type mice and glutamate receptor subunit delta2 mutant mice during eyeblink conditioning with a short trace interval. Brain Res 1063:159–167

    Article  PubMed  CAS  Google Scholar 

  • Talledo J, Sutherland Owens A, Schortinghuis T, Swerdlow NR (2009) Amphetamine effects on startle gating in normal women and female rats. Psychopharmacol 204:165–175

    Article  CAS  Google Scholar 

  • Taylor SB, Markham JA, Taylor AR, Kanaskie BZ, Koenig JI (2011) Sex-specific neuroendocrine and behavioral phenotypes in hypomorphic type II neuregulin 1 rats. Behav Brain Res 224:223–232

    Article  PubMed  CAS  Google Scholar 

  • Veenstra-VanderWeele J, Qaadir A, Palmer AA, Cook EH Jr, de Wit H (2006) Association between the casein kinase 1 epsilon gene region and subjective response to d-amphetamine. Neuropsychopharmacol 31:1056–1063

    Article  CAS  Google Scholar 

  • Wan FJ, Swerdlow NR (1996) Sensorimotor gating in rats is regulated by different dopamine–glutamate interactions in the nucleus accumbens core and shell subregions. Brain Res 722:168–176

    Article  PubMed  CAS  Google Scholar 

  • Yatsushiro S, Hayashi M, Morita M, Yamamoto A, Moriyama Y (2000) Glutamate receptor subunit delta2 is highly expressed in a novel population of glial-like cells in rat pineal glands in culture. J Neurochem 75:1115–1122

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Expert technical assistance was provided by Ms. Samantha Hines and Mr. Steven Pham. Assistance in manuscript preparation was provided by Ms. Maria Bongiovanni. Gene expression measures were performed with the support of the Genomics Core at the UC San Diego Center for AIDS Research (AI36214), the VA San Diego Healthcare System, and the Veterans Medical Research Foundation. Supported by NIH grants: MH068366, MH059803, MH065571, and MH042228

Conflicts of interest

Drs. Swerdlow’s and Light’s work has been funded by the NIH/NIMH. Dr. Swerdlow has been a paid consultant for participation in a Scientific Advisory Board for Neurocrine, Inc., for work unrelated to this project. Dr. Light has received compensation as a paid consultant for participation in a Scientific Advisory Board for Astellas for work unrelated to this project. Drs. Shilling, Trim, and Saint Marie and Ms. Breier declare no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal R. Swerdlow.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 38 kb)

ESM 2

(PDF 41 kb)

ESM 3

(PDF 36 kb)

ESM 4

(PDF 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swerdlow, N.R., Shilling, P.D., Breier, M. et al. Fronto-temporal-mesolimbic gene expression and heritable differences in amphetamine-disrupted sensorimotor gating in rats. Psychopharmacology 224, 349–362 (2012). https://doi.org/10.1007/s00213-012-2758-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2758-1

Keywords

Navigation