, Volume 226, Issue 4, pp 659–672 | Cite as

Learning to forget: manipulating extinction and reconsolidation processes to treat addiction

  • Mary M. TorregrossaEmail author
  • Jane R. Taylor


Finding effective long-lasting treatments for drug addiction has been an elusive goal. Consequently, researchers are beginning to investigate novel treatment strategies including manipulations of drug-associated memories. When environmental stimuli (cues) become associated with drug use, they become powerful motivators of continued drug use and relapse after abstinence. Reducing the strength of these cue–drug memories could decrease the number of factors that induce craving and relapse to aid in the treatment of addiction. Enhancing the consolidation of extinction learning and/or disrupting cue–drug memory reconsolidation are two strategies that have been proposed to reduce the strength of cues in motivating drug-seeking and drug-taking behavior. Here, we review the latest basic and clinical research elucidating the mechanisms underlying consolidation of extinction and reconsolidation of cue–drug memories in the hopes of developing pharmacological tools that exploit these signaling systems to treat addiction.


Addiction Extinction Reconsolidation Cue Reinstatement Memory Neuroadaptation 


  1. Alberini CM (2005) Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes? Trends Neurosci 28:51–56. doi: 10.1016/j.tins.2004.11.001 CrossRefPubMedGoogle Scholar
  2. Bassareo V, Di Chiara G (1999) Modulation of feeding-induced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation of motivational state. Eur J Neurosci 11:4389–4397. doi: 10.1046/j.1460-9568.1999.00843.x CrossRefPubMedGoogle Scholar
  3. Bassareo V, De Luca MA, Di Chiara G (2002) Differential expression of motivational stimulus properties of by dopamine in nucleus accumbens shell versus core and prefrontal cortex. J Neurosci 22:4709–4719PubMedGoogle Scholar
  4. Bernardi RE, Lattal KM, Berger SP (2006) Postretrieval propranolol disrupts a cocaine conditioned place preference. Neuroreport 17:1443–1447. doi: 10.1097/01.wnr.0000233098.20655.26 CrossRefPubMedGoogle Scholar
  5. Botreau F, Paolone G, Stewart J (2006) D-cycloserine facilitates extinction of a cocaine-induced conditioned place preference. Behav Brain Res 15:173–178. doi: 10.1016/j.bbr.2006.05.012 CrossRefGoogle Scholar
  6. Bouton ME (2002) Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biol Psychiatry 52:976–986. doi: 10.1016/S0006-3223(02)01546-9 CrossRefPubMedGoogle Scholar
  7. Bouton ME (2004) Context and behavioral processes in extinction. Learn Mem 11:485–494. doi: 10.1101/lm.78804 CrossRefPubMedGoogle Scholar
  8. Bouton ME, Bolles RC (1979) Role of conditioned contextual stimuli in reinstatement of conditioned fear. J Exp Psychol Anim Behav Process 5:368–378CrossRefPubMedGoogle Scholar
  9. Bozon B, Davis S, Laroche S (2003) A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron 40:695–701. doi: 10.1016/S0896-6273(03)00674-3 CrossRefPubMedGoogle Scholar
  10. Brown TE, Forquer MR, Cocking DL, Jansen HT, Harding JW, Sorg BA (2007) Role of matrix metalloproteinases in the acquisition and reconsolidation of cocaine-induced conditioned place preference. Learn Mem 14:214–223. doi: 10.1101/lm.476207 CrossRefPubMedGoogle Scholar
  11. Brown TE, Lee BR, Sorg BA (2008) The NMDA antagonist MK-801 disrupts reconsolidation of a cocaine-associated memory for conditioned place preference but not for self-administration in rats. Learn Mem 15:857–865. doi: 10.1101/lm.1152808 CrossRefPubMedGoogle Scholar
  12. Brunet A, Orr SP, Tremblay J, Robertson K, Nader K, Pitman RK (2008) Effect of post-retrieval propranolol on pscyhophysiologic responding during subsequent script-driven traumatic imagery in post-traumatic stress disorder. J Psychiatry Res 42:503–506. doi: 10.1016/j.jpsychires.2007.05.006 CrossRefGoogle Scholar
  13. Brunet A, Poundja J, Tremblay J, Bui E, Thomas E, Orr S, Azzoug A, Birmes P, Pitman RK (2011) Trauma reactivation under the influence of propranolol decreases posttraumatic stress symptoms and disorder: 3 open-label trials. J Clin Psychopharmacol 31:547–550. doi: 10.1097/JCP.0b013e318222f360 CrossRefPubMedGoogle Scholar
  14. Carter BL, Tiffany ST (1999) Meta-analysis of cue-reactivity in addiction research. Addiction 94:327–340. doi: 10.1046/j.1360-0443.1999.9433273.x CrossRefPubMedGoogle Scholar
  15. Chan WY, Leung HT, Westbrook RF, McNally GP (2010) Effects of recent exposure to a conditioned stimulus on extinction of Pavlovian fear conditioning. Learn Mem 17:512–521. doi: 10.1101/lm.1912510 CrossRefPubMedGoogle Scholar
  16. Chaudhri N, Sahuque LL, Janak PH (2008) Context-induced relapse of conditioned behavioral responding to ethanol cues in rats. Biol Psychiatry 64:203–210. doi: 10.1016/j.biopsych.2008.03.007 CrossRefPubMedGoogle Scholar
  17. Clem RL, Huganir RL (2010) Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science 330:1108–1112. doi: 10.1126/science.1195298 CrossRefPubMedGoogle Scholar
  18. Conklin CA, Tiffany ST (2002) Applying extinction research and theory to cue-exposure addiction treatments. Addiction 97:155–167. doi: 10.1046/j.1360-0443.2002.00014.x CrossRefPubMedGoogle Scholar
  19. Corcoran KA, Maren S (2001) Hippocampal inactivation disrupts contextual retrieval of fear memory after extinction. J Neurosci 21:1720–1726PubMedGoogle Scholar
  20. Corcoran KA, Maren S (2004) Factors regulating the effects of hippocampal inactivation on renewal of conditional fear after extinction. Learn Mem 11:598–603. doi: 10.1101/lm.78704 CrossRefPubMedGoogle Scholar
  21. de la Fuente V, Freudenthal R, Romano A (2011) Reconsolidation or extinction: transcription factor switch in the determination of memory course after retrieval. J Neurosci 31:5562–5573. doi: 10.1523/JNEUROSCI.6066-10.2011 CrossRefPubMedGoogle Scholar
  22. de Quervain DJ (2008) Glucocorticoid-induced reduction of traumatic memories: implications for the treatment of PTSD. Prog Brain Res 167:239–247. doi: 10.1016/S0079-6123(07)67017-4 CrossRefPubMedGoogle Scholar
  23. de Quervain DJ, Margraf J (2008) Glucocorticoids for the treatment of post-traumatic stress disorder and phobias: a novel therapeutic approach. Eur J Pharmacol 583:365–371. doi: 10.1016/j.ejphar.2007.11.068 CrossRefPubMedGoogle Scholar
  24. Debiec J, LeDoux JE (2006) Noradrenergic signaling in the amygdala contributes to the reconsolidation of fear memory: treatment implications for PTSD. Ann NY Acad Sci 1071:521–524. doi: 10.1196/annals.1364.056 CrossRefPubMedGoogle Scholar
  25. Debiec J, Doyere V, Nader K, LeDoux JE (2006) Directly reactivated, but not indirectly reactivated memories undergo reconsolidation in the amygdala. Proc Natl Acad Sci USA 103:3428–3433. doi: 10.1073/pnas.0507168103 CrossRefPubMedGoogle Scholar
  26. Debiec J, Diaz-Mataix L, Bush DEA, Doyere V, LeDoux JE (2010) The amygdala encodes specific sensory features of an aversive reinforcer. Nat Neurosci 13:536–537. doi: 10.1038/nn.2520 CrossRefPubMedGoogle Scholar
  27. Debiec J, Bush DE, LeDoux JE (2011) Noradrenergic enhancement of reconsolidation in the amygdala impairs extinction of conditioned fear in rats—a possible mechanism for the persistence of traumatic memories in PTSD. Depress Anxiety 28:186–193. doi: 10.1002/da.20803 CrossRefPubMedGoogle Scholar
  28. Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114. doi: 10.1016/S0166-4328(02)00286-3 CrossRefPubMedGoogle Scholar
  29. Di Ciano P, Everitt BJ (2004) Conditioned reinforcing properties of stimuli paired with self-administered cocaine, heroin, or sucrose: implications for the persistence of addictive behaviour. Neuropharmacol 47:202–213. doi: 10.1016/jneuropharm.2004.06.005 CrossRefGoogle Scholar
  30. Doyere V, Debiec J, Monfils MH, Schafe GE, LeDoux JE (2007) Synapse-specific reconsolidation of distinct fear memories in the lateral amygdala. Nat Neurosci 10:414–416. doi: 10.1038/nn1871 PubMedGoogle Scholar
  31. Drummond DC (2000) What does cue-reactivity have to offer clinical research? Addiction 95:S129–144PubMedGoogle Scholar
  32. Drummond DC, Glautier S (1994) A controlled trial of cue exposure treatment in alcohol dependence. J Consult Clin Psychol 62:809–817. doi: 10.1037/0022-006X.62.4.809 CrossRefPubMedGoogle Scholar
  33. Dudai Y (2004) The neurobiology of consolidations, or, how stable is the engram? Ann Rev Psychol 55:51–86. doi: 10.1146/annurev.psych.55.090902.142050 CrossRefGoogle Scholar
  34. Eisenberg M, Dudai Y (2004) Reconsolidation of fresh, remote, and extinguished fear memory in medaka: old fears don’t die. Eur J Neurosci 20:3397–3403. doi: 10.1111/j.1460-9568.2004.03818.x CrossRefPubMedGoogle Scholar
  35. Eisenberg M, Kobilo T, Berman DE, Dudai Y (2003) Stability of retrieved memory: inverse correlation with trace dominance. Science 301:1102–1104. doi: 10.1126/science.1086881 CrossRefPubMedGoogle Scholar
  36. Eisenhardt D, Menzel R (2007) Extinction learning, reconsolidation and the internal reinforcement hypothesis. Neurobiol Learn Mem 87:167–173. doi: 10.1016/j.nlm.2006.09.005 CrossRefPubMedGoogle Scholar
  37. Feltenstein MW, See RE (2007) NMDA receptor blockade in the basolateral amygdala disrupts consolidation of stimulus–reward memory and extinction learning during reinstatement of cocaine-seeking in an animal model of relapse. Neurobiol Learn Mem 88:435–444. doi: 10.1016/j.nlm.2007.05.006 CrossRefPubMedGoogle Scholar
  38. Field M, Duka T (2002) Cues paired with a low dose of alcohol acquire conditioned incentive properties in social drinkers. Psychopharmacol 159:325–334. doi: 10.1007/s00213-001-0923-z CrossRefGoogle Scholar
  39. Flavell CR, Barber DJ, Lee JL (2011) Behavioural memory reconsolidation of food and fear memories. Nat Commun 2:504. doi: 10.1038/ncomms1515 CrossRefPubMedGoogle Scholar
  40. Foltin RW, Haney M (2000) Conditioned effects of environmental stimuli paired with smoked cocaine in humans. Psychopharmacol 149:24–33. doi: 10.1007/s002139900340 CrossRefGoogle Scholar
  41. Font L, Cunningham CL (2012) Post-retrieval propranolol treatment does not modulate reconsolidation or extinction of ethanol-induced conditioned place preference. Pharmacol Biochem Behav 101:222–230. doi: 10.1016/j.pbb.2012.01.009 CrossRefPubMedGoogle Scholar
  42. Franken IH, de Haan HA, van der Meer CW, Haffmans PM, Hendriks VM (1999) Cue reactivity and effects of cue exposure in abstinent posttreatment drug users. J Subst Abuse Treat 16:81–85, PII: S0740-5472(98)00004-XCrossRefPubMedGoogle Scholar
  43. Freeman TP, Morgan CJ, Beesley T, Curran HV (2012) Drug cue induced overshadowing: selective disruption of natural reward processing by cigarette cues amongst abstinent but not satiated smokers. Psychol Med 42:161–171. doi: 10.1017/S0033291711001139 CrossRefPubMedGoogle Scholar
  44. Fuchs RA, Feltenstein MW, See RE (2006) The role of the basolateral amygdala in stimulus-reward memory and extinction memory consolidation and in subsequent conditioned cued reinstatement of cocaine seeking. Eur J Neurosci 23:2809–2813. doi: 10.1111/j.1460-9568.2006.04806.x CrossRefPubMedGoogle Scholar
  45. Fuchs RA, Bell GH, Ramirez DR, Eaddy JL, Su ZI (2009) Basolateral amygdala involvement in memory reconsolidation processes that facilitate drug context-induced cocaine seeking. Eur J Neurosci 30:889–900. doi: 10.1111/j.1460-9568.2009.06888.x CrossRefPubMedGoogle Scholar
  46. Hamlin AS, Clemens KJ, McNally GP (2008) Renewal of extinguished cocaine-seeking. Neurosci 151:650–670. doi: 10.1016/j.neuroscience.2007.11.018 CrossRefGoogle Scholar
  47. Hobin JA, Ji J, Maren S (2006) Ventral hippocampal muscimol disrupts context-specific fear memory retrieval after extinction in rats. Hippocampus 16:174–182. doi: 10.1002/hipo.20144 CrossRefPubMedGoogle Scholar
  48. Hofmann SG, Huweler R, Mackillop J, Kantak KM (2012) Effects of d-cycloserine on craving to alcohol cues in problem drinkers: preliminary findings. Am J Drug Alcohol Abuse 38:101–107. doi: 10.3109/00952990.2011.600396 CrossRefPubMedGoogle Scholar
  49. Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598. doi: 10.1146/annurev.neuro.29.051605.113009 CrossRefPubMedGoogle Scholar
  50. Inda MC, Muravieva EV, Alberini CM (2011) Memory retrieval and the passage of time: from reconsolidation and strengthening to extinction. J Neurosci 31:1635–1643. doi: 10.1523/JNEUROSCI.4736-10.2011 CrossRefPubMedGoogle Scholar
  51. Itzhak Y, Anderson KL (2007) Memory reconsolidation of cocaine-associated context requires nitric oxide signaling. Synapse 61:1002–1005. doi: 10.1002/syn.20446 CrossRefPubMedGoogle Scholar
  52. Jentsch JD, Taylor JR (1999) Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Pychopharmacol 146:373–390. doi: 10.1007/PL00005483 CrossRefGoogle Scholar
  53. Kalivas PW, Peters J, Knackstedt L (2006) Animal models and brain circuits in drug addiction. Mol Interven 6:339–344CrossRefGoogle Scholar
  54. Kamboj SK, Massey-Chase R, Rodney L, Das R, Almahdi B, Curran HV, Morgan CJA (2011a) Changes in cue reactivity and attentional bias following experimental cue exposure and response prevention: a laboratory of the effects of d-cycloserine in heavy drinkers. Psychopharmacol 217:25–37. doi: 10.1007/s00213-011-2254-z CrossRefGoogle Scholar
  55. Kamboj SK, Joye A, Das RK, Gibson AJW, Morgan CJA, Curran HV (2011b) Cue exposure and response prevention with heavy smokers: a laboratory-based randomized placebo-controlled trial examining the effects of d-cycloserine on cue reactivity and attentional bias. Psychopharmacol. doi: 10.1007/s00213-011-2571-2
  56. Kearns DN, Weiss SJ (2007) Contextual renewal of cocaine seeking in rats and its attenuation by the conditioned effects of an alternative reinforcer. Drug Alcohol Depend 90:193–202. doi: 10.1016/j.drugalcdep.2007.03.006 CrossRefPubMedGoogle Scholar
  57. Kelamangalath L, Seymour CM, Wagner JJ (2009) D-serine facilitates the effects of extinction to reduce cocaine-primed reinstatement of drug-seeking behavior. Neurobiol Learn Mem 92:544–551. doi: 10.1016/j.nlm.2009.07.004 CrossRefPubMedGoogle Scholar
  58. Kelley JB, Anderson KL, Itzhak Y (2007) Long-term memory of cocaine-associated context: disruption and reinstatement. Neuroreport 18:777–780. doi: 10.1097/WNR.0b013e3280c1e2e7 CrossRefPubMedGoogle Scholar
  59. Kida S, Josselyn SA, de Ortiz SP, Kogan JH, Chevere I, Masushige S, Silva AJ (2002) CREB required for the stability of new and reactivated fear memories. Nat Neurosci 5:348–355. doi: 10.1038/nn819 CrossRefPubMedGoogle Scholar
  60. Kindt M, Soeter M (2011) Reconsolidation in a human fear conditioning study: a test of extinction as updating mechanism. Biol Psychol. doi: 10.1016/j.biopsycho.2011.09.016
  61. Kindt M, Soeter M, Vervliet B (2009) Beyond extinction: erasing human fear responses and preventing the return of fear. Nat Neurosci 12:256–258. doi: 10.1038/nn.2271 CrossRefPubMedGoogle Scholar
  62. Koya E, Uejima JL, Wihbey KA, Bossert JM, Hope BT, Shaham Y (2008) Role of ventral medial prefrontal cortex in incubation of cocaine craving. Neuropharmacol 56(Suppl 1):177–185. doi: 10.1016/j.neuropharm.2008.04.022 Google Scholar
  63. Kuntze MF, Stoermer R, Mager R, Roessler A, Mueller-Spahn F, Bullinger AH (2001) Immersive virtual environments in cue exposure. Cyberpsychol Behav 4:497–501. doi: 10.1089/109493101750527051 CrossRefPubMedGoogle Scholar
  64. Ledgerwood L, Richardson R, Cranney J (2003) Effects of D-cycloserine on extinction of conditioned freezing. Behav Neurosci 117:341–349. doi: 10.1037/0735-7044.117.2.341 CrossRefPubMedGoogle Scholar
  65. Ledgerwood L, Richardson R, Cranney J (2004) D-cycloserine and the facilitation of extinction of conditioned fear: consequences for reinstatement. Behav Neurosci 118:505–513. doi: 10.1037/0735-7044.118.3.505 CrossRefPubMedGoogle Scholar
  66. Lee JL (2008) Memory reconsolidation mediates the strengthening of memories by additional learning. Nat Neurosci 11:1264–1266. doi: 10.1038/nn.2205 CrossRefPubMedGoogle Scholar
  67. Lee JL, Di Ciano P, Thomas KL, Everitt BJ (2005) Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron 47:795–801. doi: 10.1016/j.neuron.2005.08.007 CrossRefPubMedGoogle Scholar
  68. Lee JL, Milton AL, Everitt BJ (2006) Cue-induced cocaine seeking and relapse are reduced by disruption of drug memory reconsolidation. J Neurosci 26:5881–5887. doi: 10.1523/JNEUROSCI.0323-06.2006 CrossRefPubMedGoogle Scholar
  69. Lee J-H, Kwon H, Choi J, Yang B-H (2007) Cue-exposure therapy to decrease alcohol craving in virtual environment. Cyberpsychol Behav 10:617–623. doi: 10.1089/cpb.2007.9978 CrossRefPubMedGoogle Scholar
  70. Lee JL, Gardner RJ, Butler VJ, Everitt BJ (2009) D-cycloserine potentiates the reconsolidation of cocaine-associated memories. Learn Mem 16:82–85. doi: 10.1101/lm.1186609 CrossRefPubMedGoogle Scholar
  71. Leri F, Stewart J (2002) The consequences of different “lapses” on relapse to heroin seeking in rats. Exp Clin Psychopharmacol 10:339–349. doi: 10.1037/1064-1297.10.4.339 CrossRefPubMedGoogle Scholar
  72. Li FQ, Xue YX, Wang JS, Fang Q, Li YQ, Zhu WL, He YY, Liu JF, Xue LF, Shaham Y, Lu L (2010) Basolateral amygdala cdk5 activity mediates consolidation and reconsolidation of memories for cocaine cues. J Neurosci 30:10451–10359. doi: 10.1523/JNEUROSCI.2112-10.2010 Google Scholar
  73. Li YQ, Xue YX, He YY, Li FQ, Xue LF, Xu CM, Sacktor TC, Shaham Y, Lu L (2011) Inhibition of PKMzeta in nucleus accumbens core abolishes long-term drug reward memory. J Neurosci 31:5436–5446. doi: 10.1523/JNEUROSCI.5884-10.2011 CrossRefPubMedGoogle Scholar
  74. Lindgren JL, Gallagher M, Holland PC (2003) Lesions of basolateral amygdala impair extinction of CS motivational value, but not of explicit conditioned responses, in Pavlovian appetitive second-order conditioning. Eur J Neurosci 17:160–166. doi: 10.1046/j.1460-9568.2003.02421.x CrossRefPubMedGoogle Scholar
  75. Lynch WJ, Taylor JR (2005) Persistent changes in motivation to self-administer cocaine following modulation of cyclic AMP-dependent kinase A (PKA) activity in the nucleus accumbens. Eur J Neurosci 22:1214–1220. doi: 10.1111/j.1460-9568.2005.04305.x CrossRefPubMedGoogle Scholar
  76. Ma X, Zhang JJ, Yu LC (2011) Post-retrieval extinction training enhances or hinders the extinction of morphine-induced conditioned place preference in rats dependent on the retrieval–extinction interval. Psychopharmacol. doi: 10.1007/s00213-011-2545-4
  77. Marissen MA, Franken IH, Blanken P, van den Brink W, Hendriks VM (2007) Cue exposure therapy for the treatment of opiate addiction: results of a randomized controlled clinical trial. Psychother Psychosom 76:97–105. doi: 10.1159/000097968 CrossRefPubMedGoogle Scholar
  78. McCleery JM, Harvey AG (2004) Integration of psychological and biological approaches to trauma memory: implications for pharmacological prevention of PTSD. J Trauma Stress 17:485–496CrossRefPubMedGoogle Scholar
  79. McLaughlin J, See RE (2003) Selective inactivation of the dorsomedial prefrontal cortex and the basolateral amygdala attenuates conditioned-cued reinstatement of extinguished cocaine-seeking behavior in rats. Psychopharmacol 168:57–65. doi: 10.1007/s00213-002-1196-x CrossRefGoogle Scholar
  80. Meil WM, See RE (1997) Lesions of the basolateral amygdala abolish the ability of drug associated cues to reinstate responding during withdrawal from self-administered cocaine. Behav Brain Res 87:139–148. doi: 10.1016/S0166-4328(96)02270-X CrossRefPubMedGoogle Scholar
  81. Merlo E, Romano A (2008) Memory extinction entails the inhibition of transcription factor NF-kappaB. PLoS One 3:e3687. doi: 10.1371/journal.pone.0003687 CrossRefPubMedGoogle Scholar
  82. Merlo E, Freudenthal R, Maldonado H, Romano A (2005) Activation of the transcription factor NF-kappaB by retrieval is required for long-term memory reconsolidation. Learn Mem 12:23–29. doi: 10.1101/lm.82705 CrossRefPubMedGoogle Scholar
  83. Mihinidou C, Vouillac C, Koob GF, Ahmed SH (2011) Preclinical validation of a novel cocaine exposure therapy for relapse prevention. Biol Psychiatry 70:593–598. doi: 10.1016/j.biopsych.2011.03.036 CrossRefGoogle Scholar
  84. Miller CA, Marshall JF (2005) Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron 47:873–884. doi: 10.1016/j.neuron.2005.08.006 CrossRefPubMedGoogle Scholar
  85. Milton AL, Lee JL, Butler VJ, Gardner R, Everitt BJ (2008a) Intra-amygdala and systemic antagonism of NMDA receptors prevents the reconsolidation of drug-associated memory and impairs subsequently both novel and previously acquired drug-seeking behaviors. J Neurosci 28:8230–8237. doi: 10.1523/JNEUROSCI.1723-08.2008 CrossRefPubMedGoogle Scholar
  86. Milton AL, Lee JLC, Everitt BJ (2008b) Reconsolidation of appetitive memories for both natural and drug reinforcement is dependent on B-adrenergic receptors. Learn Mem 15:88–92. doi: 10.1101/lm.825008 CrossRefPubMedGoogle Scholar
  87. Milton AL, Schramm MJW, Wawrzynski JR, Gore F, Oikonomou-Mpegeti F, Wang NQ, Samuel D, Economidou D, Everitt BJ (2012) Antagonism at NMDA receptors, but not beta-adrenergic receptors, disrupts the reconsolidation of Pavlovian conditioned approach and instrumental transfer for ethanol-associated conditioned stimuli. Psychopharmacol 219:751–761. doi: 10.1007/s00213-011-2399-9 CrossRefGoogle Scholar
  88. Monfils MH, Cowansage KK, Klann E, LeDoux JE (2009) Extinction–reconsolidation boundaries: key to persistent attenuation of fear memories. Science 324:951–955. doi: 10.1126/science.1167975 CrossRefPubMedGoogle Scholar
  89. Muller J, Corodimas KP, Fridel Z, LeDoux JE (1997) Functional inactivation of the lateral and basal nuclei of the amygdala by muscimol infusion prevents fear conditioning to an explicit conditioned stimulus and to contextual stimuli. Behav Neurosci 111:683–691CrossRefPubMedGoogle Scholar
  90. Muravieva EV, Alberini CM (2010) Limited efficacy of propranolol on the reconsolidation of fear memories. Learn Mem 17:306–313. doi: 10.1101/lm.1794710 CrossRefPubMedGoogle Scholar
  91. Nader K, Schafe GE, LeDoux JE (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:722–726. doi: 10.1038/35021052 CrossRefPubMedGoogle Scholar
  92. Nestler EJ (2004) Molecular mechanisms of drug addiction. Neuropharmacol 47:24–32. doi: 10.1016/j.neuropharm.2004.06.031 CrossRefGoogle Scholar
  93. Nic Dhonnchadha BA, Szalay JJ, Achat-Mendes C, Platt DM, Otto MW, Spealman RD, Kantak KM (2010) D-cycloserine deters reacquisition of cocaine self-administration by augmenting extinction learning. Neuropsychopharmacol 35:357–367. doi: 10.1038/npp.2009.139 CrossRefGoogle Scholar
  94. O’Brien CP, Childress AR, McLellan T, Ehrman R (1990) Integrating systemic cue exposure with standard treatment in recovering drug dependent patients. Addictive Behav 15:355–365CrossRefGoogle Scholar
  95. Otis JM, Mueller D (2011) Inhibition of beta-adrenergic receptors induces a persistent deficit in retrieval of a cocaine-associated memory providing protection against reinstatement. Neuropsychopharmacol 36:1912–1920. doi: 10.1038/npp.2011.77 CrossRefGoogle Scholar
  96. Paolone G, Botreau F, Stewart J (2009) The facilitative effects of D-cycloserine on extinction of a cocaine-induced conditioned place preference can be long lasting and resistant to reinstatement. Psychopharmacol 202:403–409. doi: 10.1007/s00213-008-1280-y CrossRefGoogle Scholar
  97. Parker LA, Limebeer CL, Slomke J (2006) Renewal effect: context-dependent extinction of a cocaine- and a morphine-induced conditioned floor preference. Psychopharmacol 187:133–137. doi: 10.1007/s00213-006-0422-3 CrossRefGoogle Scholar
  98. Pedreira ME, Maldonado H (2003) Protein synthesis subserves reconsolidation or extinction depending on reminder duration. Neuron 38:863–869. doi: 10.1016/S0896-6273(03)00352-0 CrossRefPubMedGoogle Scholar
  99. Peters J, LaLumiere RT, Kalivas PW (2008) Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci 28:6046–6053. doi: 10.1523/JNEUROSCI.1045-08.2008 CrossRefPubMedGoogle Scholar
  100. Peters J, Kalivas PW, Quirk GJ (2009) Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem 16:279–288. doi: 10.1101/lm.1041309 CrossRefPubMedGoogle Scholar
  101. Peters J, Dieppa-Perea LM, Melendez LM, Quirk GJ (2010) Induction of fear extinction with hippocampal–infralimbic BDNF. Science 328:1288–1290CrossRefPubMedGoogle Scholar
  102. Pollandt S, Liu J, Orozco-Cabal L, Grigoriadis DE, Vale WW, Gallagher JP, Shinnick-Gallagher P (2006) Cocaine withdrawal enhances long-term potentiation induced by corticotropin-releasing factor at central amygdala glutamatergic synapses via CRF, NMDA receptors and PKA. Eur J Neurosci 24:1733–1743. doi: 10.1111/j.1460-9568.2006.05049.x CrossRefPubMedGoogle Scholar
  103. Power AE, Berlau DJ, McGaugh JL, Steward O (2006) Anisomycin infused into the hippocampus fails to block "reconsolidation" but impairs extinction: the role of re-exposure duration. Learn Mem 13:27–34. doi: 10.1101/lm.91206 CrossRefPubMedGoogle Scholar
  104. Price KL, Baker NL, McRae-Clark AL, Saladin ME, DeSantis SM, Santa Ana EJ, Brady KT (2012) A randomized, placebo-controlled laboratory study of the effects of d-cycloserine on craving in cocaine-dependent individuals. Psychopharmacol. doi: 10.1007/s00213-011-2592-x
  105. Ramirez DR, Bell GH, Lasseter HC, Xie X, Traina SA, Fuchs RA (2009) Dorsal hippocampal regulation of memory reconsolidation processes that facilitate drug context-induced cocaine-seeking behavior in rats. Eur J Neurosci 30:901–912. doi: 10.1111/j.1460-9568.2009.06889.x CrossRefPubMedGoogle Scholar
  106. Ressler KJ, Rothbaum BO, Tannenbaum L, Anderson P, Graap K, Zimand E, Hodges L, Davis M (2004) Cognitive enhancers as adjuncts to psychotherapy: use of D-cycloserine in phobic individuals to facilitate extinction of fear. Arch Gen Psychiatry 61:1136–1144CrossRefPubMedGoogle Scholar
  107. Robbins TW, Everitt BJ (2002) Limbic-striatal memory systems and drug addiction. Neurobiol Learn Mem 78:149–163. doi: 10.1006/nlme.2002.4103 CrossRefGoogle Scholar
  108. Robinson MJ, Franklin KB (2007) Central but not peripheral beta-adrenergic antagonism blocks reconsolidation for a morphine place preference. Behav Brain Res 182:129–134. doi: 10.1016/j.bbr.2007.05.023 CrossRefPubMedGoogle Scholar
  109. Robinson MJ, Franklin KB (2010) Reconsolidation of a morphine place preference: impact of the strength and age of memory on disruption by propranolol and midazolam. Behav Brain Res 213:201–207. doi: 10.1016/j.bbr.2010.04.056 CrossRefPubMedGoogle Scholar
  110. Robinson MJ, Ross EC, Franklin KB (2011a) The effect of propranolol dose and novelty of the reactivation procedure on the reconsolidation of a morphine place preference. Behav Brain Res 216:281–284. doi: 10.1016/j.bbr.2010.08.009 CrossRefGoogle Scholar
  111. Robinson MJ, Armson M, Franklin KB (2011b) The effect of propranolol and midazolam on the reconsolidation of a morphine place preference in chronically treated rats. Front Behav Neurosci 5:42. doi: 10.3389/fnbeh.2011.00042 CrossRefPubMedGoogle Scholar
  112. Sadler R, Herzig V, Schmidt WJ (2007) Repeated treatment with the NMDA antagonist MK-801 disrupts reconsolidation of memory for amphetamine-conditioned place preference. Behav Pharmacol 18:699–703. doi: 10.1097/FBP.0b013e3282effb81 CrossRefPubMedGoogle Scholar
  113. Sakurai S, Yu L, Tan SE (2007) Roles of hippocampal N-methyl-D-aspartate receptors and calcium/calmodulin-dependent protein kinase II in amphetamine-produced conditioned place preference in rats. Behav Pharmacol 18:497–506. doi: 10.1097/FBP.0b013e3282ee7b62 CrossRefPubMedGoogle Scholar
  114. Sanchez H, Quinn JJ, Torregrossa MM, Taylor JR (2010) Reconsolidation of a cocaine-paired stimulus requires amygdalar protein kinase A. J Neurosci 30:4401–4407. doi: 10.1523/JNEUROSCI.3149-09.2010 CrossRefPubMedGoogle Scholar
  115. Santa Ana EJ, Rounsaville BJ, Frankforter TL, Nich C, Babuscio T, Poling J, Gonsai K, Hill KP, Carroll KM (2009) D-cycloserine attenuates reactivity to smoking cues in nicotine dependent smokers: a pilot investigation. Drug Alcohol Depend 104:220–227. doi: 10.1016/j.drugalcdep.2009.04.023 CrossRefPubMedGoogle Scholar
  116. Schiller D, Monfils MH, Raio CM, Johnson DC, Ledoux JE, Phelps EA (2010) Preventing the return of fear in humans using reconsolidation update mechanisms. Nature 463:49–53. doi: 10.1038/nature08637 CrossRefPubMedGoogle Scholar
  117. Schroeder JP, Packard MG (2003) Systemic or intra-amygdala injections of glucose facilitate memory consolidation for extinction of drug-induced conditioned reward. Eur J Neurosci 17:1482–1488. doi: 10.1046/j.1460-9568.2003.02578.x CrossRefPubMedGoogle Scholar
  118. Schroeder JP, Packard MG (2004) Facilitation of memory for extinction of drug-induced conditioned reward: role of amygdala and acetylcholine. Learn Mem 11:641–647. doi: 10.1101/lm.78504 CrossRefPubMedGoogle Scholar
  119. See RE (2002) Neural substrates of conditioned-cued relapse to drug-seeking behavior. Pharmacol Biochem Behav 71:517–529. doi: 10.1016/S0091-3057(01)00682-7 CrossRefPubMedGoogle Scholar
  120. Self DW, Choi KH (2004) Extinction-induced neuroplasticity attenuates stress-induced cocaine seeking: a state-dependent learning hypothesis. Stress 7:145–155. doi: 10.1080/10253890400012677 CrossRefPubMedGoogle Scholar
  121. Shabashov D, Shohami E, Yaka R (2011) Inactivation of PKMzeta in the NAc shell abolished cocaine-conditioned reward. J Mol Neurosci. doi: 10.1007/s12031-011-9671-7
  122. Shaham Y, Shalev U, Lu L, De Wit H, Stewart J (2003) The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacol 168:3–20. doi: 10.1007/s00213-002-1224-x CrossRefGoogle Scholar
  123. Shalev U, Grimm JW, Shaham Y (2002) Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol Rev 54:1–42. doi: 10.1124/pr.54.1.1 CrossRefPubMedGoogle Scholar
  124. Shema R, Sacktor TC, Dudai Y (2007) Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKM zeta. Science 317:951–953. doi: 10.1126/science.1144334 CrossRefPubMedGoogle Scholar
  125. Sorg BA (2012) Reconsolidation of drug memories. Neurosci Biobehav Rev 36:1400–1417. doi: 10.1016/j.neubiorev.2012.02.004 CrossRefPubMedGoogle Scholar
  126. Sutton MA, Schmidt EF, Choi KH, Schad CA, Whisler K, Simmons D, Karanian DA, Monteggia LM, Neve RL, Self DW (2003) Extinction-induced upregulation in AMPA receptors reduces cocaine-seeking behaviour. Nature 421:70–75. doi: 10.1038/nature01249 CrossRefPubMedGoogle Scholar
  127. Suzuki A, Josselyn SA, Frankland PW, Masushige S, Silva AJ, Kida S (2004) Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci 24:4787–4795. doi: 10.1523/JNEUROSCI.5491-03.2004 CrossRefPubMedGoogle Scholar
  128. Taylor JR, Olausson P, Quinn JJ, Torregrossa MM (2009) Targeting extinction and reconsolidation mechanisms to combat the impact of drug cues on addiction. Neuropharmacology 56(Suppl 1):186–195. doi: 10.1016/j.neuropharm.2008.07.027 CrossRefPubMedGoogle Scholar
  129. Terwilliger RZ, Beitner-Johnson D, Sevarino KA, Crain SM, Nestler EJ (1991) A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res 548:100–110. doi: 10.1016/0006-8993(91)91111-D CrossRefPubMedGoogle Scholar
  130. Torregrossa MM, Kalivas PW (2008) Microdialysis and the neurochemistry of addiction. Pharmacol Biochem Behav 90:261–272. doi: 10.1016/j.pbb.2007.09.001 CrossRefPubMedGoogle Scholar
  131. Torregrossa MM, Sanchez H, Taylor JR (2010) D-cycloserine reduces the context specificity of Pavlovian extinction of cocaine cues through actions in the nucleus accumbens. J Neurosci 30:10526–10533. doi: 10.1523/JNEUROSCI.2523-10.2010 CrossRefPubMedGoogle Scholar
  132. Torregrossa MM, Corlett PR, Taylor JR (2011) Aberrant learning and memory in addiction. Neurobiol Learn Mem 96:609–623. doi: 10.1016/j.nlm.2011.02.014 CrossRefPubMedGoogle Scholar
  133. Toyomitsu Y, Nishijo H, Uwano T, Kuratsu J, Ono T (2002) Neuronal responses of the rat amygdala during extinction and reassociation learning in elementary and configural associative tasks. Eur J Neurosci 15:753–768. doi: 10.1046/j.1460-9568.2002.01889.x CrossRefPubMedGoogle Scholar
  134. Tronson NC, Taylor JR (2007) Molecular mechanisms of memory reconsolidation. Nature Rev Neurosci 8:262–275. doi: 10.1038/nrn2090 CrossRefGoogle Scholar
  135. Tronson NC, Wiseman SL, Olausson P, Taylor JR (2006) Bidirectional behavioral plasticity of memory reconsolidation depends on amygdalar protein kinase A. Nat Neurosci 9:167–169. doi: 10.1038/nn1628 CrossRefPubMedGoogle Scholar
  136. Tzeng WY, Chang WT, Chuang JY, Lin KY, Cherng CG, Yu L (2012) Disruption of memory reconsolidation impairs storage of other, non-reactivated memory. Neurobiol Learn Mem 97:241–249. doi: 10.1016/j.nlm.2012.01.001 CrossRefPubMedGoogle Scholar
  137. Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12:227–462. doi: 10.1111/j.1369-1600.2007.00070.x CrossRefPubMedGoogle Scholar
  138. Valjent E, Corbillé AG, Bertran-Gonzalez J, Hervé D, Girault JA (2006) Inhibition of ERK pathway or protein synthesis during reexposure to drugs of abuse erases previously learned place preference. Proc Nat Acad Sci 103:2932–2937. doi: 10.1073/pnas.0511030103 CrossRefPubMedGoogle Scholar
  139. Vansteenwegen D, Vervliet B, Iberico C, Baeyens F, Van den Bergh O, Hermans D (2007) The repeated confrontation with videotapes of spiders in multiple contexts attenuates renewal of fear in spider-anxious students. Behav Res Ther 45:1169–1179. doi: 10.1016/j.brat.2006.08.023 CrossRefPubMedGoogle Scholar
  140. von der Goltz C, Vengeliene V, Bilbao A, Perreau-Lenz S, Pawlak CR, Kiefer F, Spanagel R (2009) Cue-induced alcohol-seeking behavior is reduced by disrupting the reconsolidation of alcohol-related memories. Psychopharmacol 205:389–397. doi: 10.1007/s00213-009-1544-1 CrossRefGoogle Scholar
  141. Vurbic D, Gold B, Bouton ME (2011) Effects of D-cycloserine on the extinction of appetitive operant learning. Behav Neurosci 125:551–559. doi: 10.1037/a0024-403 CrossRefPubMedGoogle Scholar
  142. Wang XY, Zhao M, Ghitza UE, Li YQ, Lu L (2008) Stress impairs reconsolidation of drug memory via glucocorticoid receptors in the basolateral amygdala. J Neurosci 28:5602–5610. doi: 10.1523/JNEUROSCI.0750-08.2008 CrossRefPubMedGoogle Scholar
  143. Watson BJ, Wilson S, Griffin L, Kalk NJ, Taylor LG, Munafo MR, Lingford-Hughes AR, Nutt DJ (2011) A pilot study of the effectiveness of d-cycloserine during cue-exposure therapy in abstinent alcohol-dependent subjects. Psychopharmacol 216:121–129. doi: 10.1007/s00213-011-2199-2 CrossRefGoogle Scholar
  144. Weiss F, Martin-Fardon R, Ciccocioppo R, Kerr TM, Smith DL, Ben-Shahar O (2001) Enduring resistance to extinction of cocaine-seeking behavior induced by drug-related cues. Neuropsychopharmacol 25:361–372. doi: 361-372.10.1038/S0893-133X(01)00238-X CrossRefGoogle Scholar
  145. Wilensky AE, Schafe GE, Kristensen MP, LeDoux JE (2006) Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J Neurosci 26:12387–12396. doi: 10.1523/JNEUROSCI.4316-06.2006 CrossRefPubMedGoogle Scholar
  146. Winters BD, Tucci MC, DaCosta-Furtado M (2009) Older and stronger object memories are selectively destabilized by reactivation in the presence of new information. Learn Mem 16:545–553. doi: 10.1101/lm.1509909 CrossRefPubMedGoogle Scholar
  147. Woods AM, Bouton ME (2006) D-cycloserine facilitates extinction but does not eliminate renewal of the conditioned emotional response. Behav Neurosci 120:1159–1162. doi: 10.1037/0735-7044.120.5.1159 CrossRefPubMedGoogle Scholar
  148. Wouda JA, Diergaarde L, Riga D, van Mourik Y, Schoffelmeer AN, De Vries TJ (2010) Disruption of long-term alcohol-related memory reconsolidation: role of beta-adrenoceptors and NMDA receptors. Front Behav Neurosci 4:179. doi: 10.3389/fnbeh.2010.00179 CrossRefPubMedGoogle Scholar
  149. Wu P, Xue YX, Ding ZB, Xue LF, Xu CM, Lu L (2011) Glycogen synthase kinase 3B in the basolateral amygdala is critical for the reconsolidation of cocaine reward memory. J Neurochem 118:113–125. doi: 10.1111/j.1471-4159.2011.07277.x CrossRefPubMedGoogle Scholar
  150. Xue YX, Luo YX, Wu P, Shi HS, Xue LF, Chen C, Zhu WL, Ding ZB, Bao YP, Shi J, Epstein DH, Shaham Y, Lu L (2012) A memory retrieval–extinction procedure to prevent drug craving and relapse. Science 336:241–245. doi: 10.1126/science.1215070 CrossRefPubMedGoogle Scholar
  151. Zhai H, Wu P, Chen S, Li F, Liu Y, Lu L (2008) Effects of scopolamine and ketamine on reconsolidation of morphine conditioned place preference in rats. Behav Pharmacol 19:211–216. doi: 10.1097/FBP.0b013e3282fe88a0 CrossRefPubMedGoogle Scholar
  152. Zhao LY, Zhang XL, Shi J, Epstein DH, Lu L (2009) Psychosocial stress after reactivation of drug-related memory impairs later recall in abstinent heroin addicts. Psychopharmacol 203:599–608. doi: 10.1007/s00213-008-1406-2 CrossRefGoogle Scholar
  153. Zhao LY, Sun LL, Shi J, Li P, Zhang Y, Lu L (2011) Effects of beta-adrenergic receptor blockade on drug-related memory reconsolidation in abstinent heroin addicts. Drug Alcohol Depend 118:224–229. doi: 10.1016/j.drugalcdep.2011.03.025 CrossRefPubMedGoogle Scholar
  154. Zhou W, Kalivas PW (2008) N-acetylcysteine reduces extinction responding and induces enduring reductions in cue- and heroin-induced drug-seeking. Biol Psychiatry 63:338–340. doi: 10.1016/j.biopsych.2007.06.008 CrossRefPubMedGoogle Scholar
  155. Zhou SJ, Xue LF, Wang XY, Jiang WG, Xue YX, Liu JF, He YY, Luo YX, Lu L (2011) NMDA receptor glycine modulatory site in the ventral tegmental area regulates the acquisition, retrieval, and reconsolidation of cocaine reward memory. Psychopharmacol. doi: 10.1007/s00213-011-2551-6

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Psychiatry, Division of Molecular Psychiatry, S301Yale University School of MedicineNew HavenUSA
  2. 2.Department of PsychologyYale UniversityNew HavenUSA

Personalised recommendations