Psychopharmacology

, Volume 223, Issue 1, pp 67–73 | Cite as

Inhalation of 7.5% carbon dioxide increases alerting and orienting attention network function

  • Matthew Garner
  • Angela Attwood
  • David S. Baldwin
  • Marcus R. Munafò
Original Investigation

Abstract

Rationale

The development of experimental models that readily translate between animals and humans is required to better integrate and clarify the biological, behavioural and cognitive mechanisms that underlie normal fear and pathological anxiety. Inhalation of low concentrations of carbon dioxide (CO2) increases anxiety and autonomic arousal in humans, triggers related behaviours in small animals, and increases selective attention to threat in healthy humans. However the effects on broader cognitive (non-emotional) processes that characterize anxiety are not known.

Objectives

To examine the effect of 7.5 % CO2 inhalation (vs. air) on the efficiency of discrete attention networks implicated in anxiety: alerting (maintaining an alert state), orienting (the selection of information from sensory input) and executive control (resolving cognitive conflict).

Methods

Twenty-three healthy human participants completed a computerized Attention Network Test (ANT) during inhalation of 7.5 % CO2 enriched and normal/medical air. Gas was administered blind to participants with inhalation order counterbalanced across participants. Measures of heart rate, blood pressure and subjective mood/anxiety were obtained at baseline and following each inhalation period.

Results

CO2 inhalation increased anxiety, autonomic arousal and the efficiency of alerting and orienting attention network function. Autonomic response to CO2 correlated with increased orienting; and CO2–induced anxiety, autonomic arousal and orienting network function increased with chronic (trait) anxiety.

Conclusions

Evidence that CO2 modulates attention mechanisms involved in the temporal detection and spatial location of salient stimuli converges with evidence that CO2 triggers fear behaviour in animals via direct innervation of a distributed neural network that facilitates environmental hypervigilance.

Keywords

Carbon dioxide Anxiety Cognition Autonomic arousal Attention Network Test Noradrenaline 

References

  1. Abrams K, Rassovsky Y, Kushner MG (2006) Evidence for respiratory and nonrespiratory subtypes in panic disorder. Depression Anxiety 23(8):474–481. doi:10.1002/da.20179 CrossRefGoogle Scholar
  2. Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450. doi:10.1146/annurev.neuro.28.061604.135709 PubMedCrossRefGoogle Scholar
  3. Bailey JE, Nutt DJ (2008) GABA-A receptors and the response to CO2 inhalation - A translational trans-species model of anxiety? Pharmacol Biochem Behav 90(1):51–57. doi:10.1016/j.pbb.2008.04.002 PubMedCrossRefGoogle Scholar
  4. Bailey JE, Argyropoulos SV, Lightman SL, Nutt DJ (2003) Does the brain noradrenaline network mediate the effects of the CO2 challenge? J Psychopharmacol 17(3):252–259PubMedCrossRefGoogle Scholar
  5. Bailey JE, Argyropoulos SV, Kendrick AH, Nutt DJ (2005) Behavioral and cardiovascular effects of 7.5 % CO2 in human volunteers. Depression Anxiety 21(1):18–25. doi:10.1002/da.20048 CrossRefGoogle Scholar
  6. Bailey JE, Kendrick A, Diaper A, Potokar JP, Nutt DJ (2007) A validation of the 7.5% CO2 model of GAD using paroxetine and lorazepam in healthy volunteers. J Psychopharmacol 21(1):42–49. doi:10.1177/0269881106063889 PubMedCrossRefGoogle Scholar
  7. Bailey JE, Dawson GR, Dourish CT, Nutt DJ (2011a) Validating the inhalation of 7.5% CO(2) in healthy volunteers as a human experimental medicine: a model of generalized anxiety disorder (GAD). J Psychopharmacol 25(9):1192–1198. doi:10.1177/0269881111408455 PubMedCrossRefGoogle Scholar
  8. Bailey JE, Papadopoulos A, Diaper A, Phillips S, Schmidt ME, van der Ark P, Nutt DJ (2011b) Preliminary evidence of anxiolytic effects of the CRF(1) receptor antagonist R317573 in the 7.5% CO(2) proof-of-concept experimental model of human anxiety. J Psychopharmacol 25(9):1199–1206. doi:10.1177/0269881111400650 PubMedCrossRefGoogle Scholar
  9. Bar-Haim Y, Lamy D, Pergamin L, Bakermans-Kranenburg MJ, van Ijendoorn MH (2007) Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychol Bull 133(1):1–24. doi:10.1037/0033-2909.133.1.1|issn0033-2909 PubMedCrossRefGoogle Scholar
  10. Bishop SJ (2007) Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn Sci 11(7):307–316. doi:10.1016/j.tics.2007.05.008 PubMedCrossRefGoogle Scholar
  11. Bishop SJ, Duncan J, Lawrence AD (2004) State anxiety modulation of the amygdala response to unattended threat-related stimuli. J Neurosci 24(46):10364–1036PubMedCrossRefGoogle Scholar
  12. Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD (2001) Conflict monitoring and cognitive control. Psychol Rev 108(3):624–652. doi:10.1037//0033-295x.108.3.624 PubMedCrossRefGoogle Scholar
  13. Colasanti A, Salamon E, Schruers K, van Diest R, van Duinen M, Griez EJ (2008) Carbon dioxide-induced emotion and respiratory symptoms in healthy volunteers. Neuropsychopharmacology 33(13):3103–3110. doi:10.1038/npp.2008.31 PubMedCrossRefGoogle Scholar
  14. Coull JT, Nobre AC, Frith CD (2001) The noradrenergic alpha 2 agonist clonidine modulates behavioural and neuroanatomical correlates of human attentional orienting and alerting. Cereb Cortex 11(1):73–84PubMedCrossRefGoogle Scholar
  15. Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6:13–34PubMedCrossRefGoogle Scholar
  16. Dunn AJ, Swiergiel AH, Palamarchouk V (2004) Brain circuits involved in corticotropin-releasing factor–norepinephrine interactions during stress. Ann N Y Acad Sci 1018:25–34PubMedCrossRefGoogle Scholar
  17. Eysenck MW (1997) Anxiety and cognition: A unified theory. Psychology Press, HoveGoogle Scholar
  18. Eysenck MW, Derakshan N, Santos R, Calvo MG (2007) Anxiety and cognitive performance: Attentional control theory. Emotion 7(2):336–353. doi:10.1037/1528-3542.7.2.336 PubMedCrossRefGoogle Scholar
  19. Fan J, McCandliss BD, Sommer T, Raz A, Posner MI (2002) Testing the efficiency and independence of attentional networks. J Cogn Neurosci 14(3):340–347PubMedCrossRefGoogle Scholar
  20. Garner M, Baldwin DS, Bradley BP, Mogg K (2009) Impaired identification of fearful faces in Generalised Social Phobia. J Affect Disord 115(3):460–465PubMedCrossRefGoogle Scholar
  21. Garner M, Attwood A, Baldwin DS, James A, Munafo MR (2011) Inhalation of 7.5 % Carbon Dioxide Increases Threat Processing in Humans. Neuropsychopharmacology 36(8):1557–1562. doi:10.1038/npp.2011.15 PubMedCrossRefGoogle Scholar
  22. Grefkes C, Wang LE, Eickhoff SB, Fink GR (2010) Noradrenergic Modulation of Cortical Networks Engaged in Visuomotor Processing. Cerebral Cortex 20(4):783–797. doi:10.1093/cercor/bhp144 PubMedCrossRefGoogle Scholar
  23. Hood SD, Melichar JK, Taylor LG, Kalk N, Edwards TR, Hince DA, Lenox-Smith A, Lingford-Hughes AR, Nutt DJ (2011) Noradrenergic function in generalized anxiety disorder: impact of treatment with venlafaxine on the physiological and psychological responses to clonidine challenge. J Psychopharmacol 25(1):78–86. doi:10.1177/0269881109359099 PubMedCrossRefGoogle Scholar
  24. Kalk NJ, Nutt DJ, Lingford-Hughes AR (2011) The role of central noradrenergic dysregulation in anxiety disorders: evidence from clinical studies. J Psychopharmacol 25(1):3–16. doi:10.1177/0269881110367448 PubMedCrossRefGoogle Scholar
  25. Mogg K, Millar N, Bradley BP (2000) Biases in eye movements to threatening facial expressions in generalized anxiety disorder and depressive disorder. J Abnorm Psychol 109(4):695–704. doi:10.1037//0021-843x.109.4.695|issn0021-843x PubMedCrossRefGoogle Scholar
  26. Monk CS, Telzer EH, Mogg K, Bradley BP, Mai XQ, Louro HMC, Chen B, McClure-Tone EB, Ernst M, Pine DS (2008) Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Arch Gen Psychiatry 65(5):568–576PubMedCrossRefGoogle Scholar
  27. Monkul ES, Onur E, Tural U, Hatch JP, Alkin T, Yucel B, Fidaner H (2010) History of suffocation, state-trait anxiety, and anxiety sensitivity in predicting 35% carbon dioxide-induced panic. Psychiatry Res 179(2):194–197. doi:10.1016/j.psychres.2009.06.015 PubMedCrossRefGoogle Scholar
  28. Nitschke JB, Sarinopoulos I, Oathes DJ, Johnstone T, Whalen PJ, Davidson RJ, Kalin NH (2009) Anticipatory Activation in the Amygdala and Anterior Cingulate in Generalized Anxiety Disorder and Prediction of Treatment Response. Am J Psychiatry 166(3):302–310. doi:10.1176/appi.ajp.2008.07101682 PubMedCrossRefGoogle Scholar
  29. Pacheco-Unguetti AP, Acosta A, Callejas A, Lupianez J (2010) Attention and Anxiety: Different Attentional Functioning Under State and Trait Anxiety. Psychol Sci 21(2):298–304. doi:10.1177/0956797609359624 PubMedCrossRefGoogle Scholar
  30. Poma SZ, Milleri S, Squassante L, Nucci G, Bani M, Perini GI, Merlo-Pich E (2005) Characterization of a 7 % carbon dioxide (CO2) inhalation paradigm to evoke anxiety symptoms in healthy subjects. J Psychopharmacol 19(5):494–503. doi:10.1177/0269881105056533 PubMedCrossRefGoogle Scholar
  31. Seddon K, Morris K, Bailey J, Potokar J, Rich A, Wilson S, Bettica P, Nutt DJ (2011) Effects of 7.5 % CO2 challenge in generalized anxiety disorder. J Psychopharmacol 25(1):43–51. doi:10.1177/0269881110364270 PubMedCrossRefGoogle Scholar
  32. Sheehan DV, Lecrubier Y, Harnett-Sheehan K, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar G (1998) The Mini International Neuropsychiatric Interview (M.I.N.I.): The Development and Validation of a Structured Diagnostic Psychiatric Interview. J Clin Psychiatry 59:22–33PubMedGoogle Scholar
  33. Somerville LH, Whalen PJ, Kelley WM (2010) Human Bed Nucleus of the Stria Terminalis Indexes Hypervigilant Threat Monitoring. Biol Psychiatry 68(5):416–424. doi:10.1016/j.biopsych.2010.04.002 PubMedCrossRefGoogle Scholar
  34. Spielberger CD, Gorsuch RL, Lushene R, Vagg PR, Jacobs GA (1983) Manual for the State-Trait Anxiety Inventory. Consulting Psychologists Press, Palo AltoGoogle Scholar
  35. Stein MB, Simmons AN, Feinstein JS, Paulus MP (2007) Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. Am J Psychiatry 164(2):318–327PubMedCrossRefGoogle Scholar
  36. Taylor S, Cox BJ (1998) An expanded anxiety sensitivity index: evidence for a hierarchic structure in a clinical sample. J Anxiety Disord 12:463–483PubMedCrossRefGoogle Scholar
  37. Van Den Hout MA, Griez E (1984) Panic symptoms after inhalation of carbon dioxide. Brit J Psychiat 144:503–507Google Scholar
  38. Watson D, Clark LA, Tellegen A (1988) Development and validation of brief measures of positive and negative affect: The PANAS scale. J Pers Soc Psychol 54:1063–1070PubMedCrossRefGoogle Scholar
  39. Ziemann AE, Allen JE, Dahdaleh NS, Drebot II, Coryell MW, Wunsch AM, Lynch CM, Faraci FM, Howard MA, Welsh MJ et al (2009) The Amygdala Is a Chemosensor that Detects Carbon Dioxide and Acidosis to Elicit Fear Behavior. Cell 139(5):1012–1021. doi:10.1016/j.cell.2009.10.029 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Matthew Garner
    • 1
    • 2
  • Angela Attwood
    • 3
  • David S. Baldwin
    • 1
  • Marcus R. Munafò
    • 3
  1. 1.Clinical and Experimental Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
  2. 2.Psychology, Faculty of Social and Human SciencesUniversity of SouthamptonSouthamptonUK
  3. 3.School of Experimental PsychologyUniversity of BristolBristolUK

Personalised recommendations