Skip to main content
Log in

Alteration of neuropathic and visceral pain in female C57BL/6J mice lacking the PPAR-α gene

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Peroxisome proliferator-activated receptors (PPARs) participate in the control of chronic neuropathic and inflammatory pain, and these receptors could play a role on acute pain.

Objectives

We used null (PPAR-α −/−) and wild-type female mice and the PPAR-α blocker GW6471 to evaluate (1) the role of PPAR-α on neuropathic pain, (2) the involvement of PPAR-α on visceral and acute thermal nociception, and (3) tissue levels of pro-inflammatory factors.

Methods

Neuropathic pain was induced by sciatic nerve ligature. Acute thermal nociception was evaluated through hot-plate, tail-immersion, and writhing tests. The pro-inflammatory factors nitric oxide, TNF-α, and interleukins-1β and -3 were measured.

Results

Regarding neuropathic pain, higher sensitivity to thermal and mechanical non-noxious and noxious stimuli was observed in mice lacking PPAR-α. Cold and mechanical allodynia and heat hyperalgesia were augmented in null mice. With respect to visceral nociception, writhes after acetic acid were enhanced in mutant mice. Although basal thermal sensitivity was enhanced in PPAR-α −/− mice, cutaneous thermal nociception did not differ between genotypes. Blockade of PPAR-α was devoid of effects on acute thermal and writhing tests. Finally, nerve ligature enhanced pro-inflammatory factors in plantar tissue, levels being higher in null mice. No changes in pro-inflammatory factors were observed in the hot-plate test.

Conclusions

Genetic ablation of PPAR-α is involved in neuropathic and visceral nociception. Lack of PPAR-α is not involved in acute thermal pain, but it is involved in basal thermal reaction. Changes are biological adaptations to receptor deletion because blockade of PPAR-α does not affect inflammatory pain or thermal reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahern GP (2003) Activation of TRPV1 by the satiety factor oleoylethanolamide. J Biol Chem 278:30429–30434

    Article  PubMed  CAS  Google Scholar 

  • Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  PubMed  CAS  Google Scholar 

  • Brittain RT, Lehrer DN, Spencer PS (1963) Phenylquinone writhing test: interpretation of data. Nature 200:895–896

    Article  PubMed  CAS  Google Scholar 

  • Bura AS, Nadal X, Ledent C, Maldonado R, Valverde O (2008) A2A adenosine receptor regulates glia proliferation and pain after peripheral nerve injury. Pain 140:95–103

    Article  PubMed  CAS  Google Scholar 

  • Chang SL, Kenigs V, Moldow RL, Zadina JE (1995) Chronic treatment with morphine and ethanol, but not cocaine, attenuates IL-1 beta activation of FOS expression in the rat hypothalamic paraventricular nucleus. Adv Exp Med Biol 373:201–208

    Article  PubMed  CAS  Google Scholar 

  • Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63

    Article  PubMed  CAS  Google Scholar 

  • Chen XR, Besson VC, Palmier B, Garcia Y, Plotkine M, Marchand-Leroux C (2007) Neurological Recovery-Promoting, Anti-Inflammatory, and Anti-Oxidative Effects Afforded by Fenofibrate, a PPAR Alpha Agonist, in traumatic Brain Injury. J Neurotrauma 24:1119–1131

    Article  PubMed  Google Scholar 

  • Cluny NL, Keenan CM, Lutz B, Piomelli D, Sharkey KA (2009) The identification of peroxisome proliferator-activated receptor alpha-independent effects of oleoylethanolamide on intestinal transit in mice. Neurogastroenterol Motil 21:420–429

    Article  PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Mazzon E, Di Paola R, Peli A, Bonato A, Britti D et al (2006) The role of the peroxisome proliferator-activated receptor-alpha (PPAR-alpha) in the regulation of acute inflammation. J Leuk Biol 79:999–1010

    Article  CAS  Google Scholar 

  • Daynes RA, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2:748–759

    Article  PubMed  CAS  Google Scholar 

  • DeLeo JA, Yezierski RP (2001) The role of neuroinflammation and neuroimmune activation in persistent pain. Pain 90:1–6

    Article  PubMed  CAS  Google Scholar 

  • Drew PD, Xu J, Storer PD, Chavis JA, Racke MK (2006) Peroxisome proliferator-activated receptor agonist regulation of glial activation: relevance to CNS inflammatory disorders. Neurochem Int 49:183–189

    Article  PubMed  CAS  Google Scholar 

  • Espejo EF, Gil E (1998) Antagonism of peripheral 5-HT4 receptors reduces visceral and cutaneous pain in mice, and induces visceral analgesia after simultaneous inactivation of 5-HT3 receptors. Brain Res 788(1–2):20–24

    Article  PubMed  CAS  Google Scholar 

  • Espejo EF, Mir D (1993) Structure of the rat’s behaviour in the hot plate test. Behav Brain Res 56:171–176

    Article  PubMed  CAS  Google Scholar 

  • Espejo EF, Stinus L, Cador M, Mir D (1994) Effects of morphine and naloxone on behaviour in the hot plate test: an ethopharmacological study in the rat. Psychopharmacology (Berl) 113:500–510

    Article  CAS  Google Scholar 

  • Flores CA, Cid LP, Sepúlveda FV (2010) Strain-dependent differences in electrogenic secretion of electrolytes across mouse colon epithelium. Exp Physiol 95:686–698

    Article  PubMed  CAS  Google Scholar 

  • Franklin KBJ, Abbott FV (1989) Techniques for assessing the effects of drugs on nociceptive responses. In: Boulton AA, Baker GB, Greenshaw AJ (eds) Neuromethods: Psychopharmacology. Humana, New Jersey, pp 145–215

    Google Scholar 

  • Genovese T, Esposito E, Mazzoni E, Di Paola R, Meli R, Bramanti P et al (2008) Effects of palmitoylethanolamide on signaling pathways implicated in the development of spinal cord injury. J Pharmacol Exp Ther 326:12–23

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Aparicio R, Flores JA, Tasset I, Tunez I, Fernandez-Espejo E (2011) Mice lacking the peroxisome proliferator-activated receptor alpha gene present reduced number of dopamine neurons in the substantia nigra without altering motor behavior or dopamine neuron decline over life. Neuroscience 186:161–169

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–88

    Article  PubMed  CAS  Google Scholar 

  • Kono K, Kamijo Y, Hora K, Takahashi K, Higuchi M, Kiyosawa K et al (2009) PPAR alpha attenuates the proinflammatory response in activated mesangial cells. Am J Physiol Renal 29:F328–F336

    Google Scholar 

  • Kostadinova R, Wahli W, Michalik L (2005) PPARs in diseases: control mechanisms of inflammation. Curr Med Chem 12:2995–3009

    Article  PubMed  CAS  Google Scholar 

  • Laird JM, Bennett GJ (1993) An electrophysiological study of dorsal horn neurons in the spinal cord of rats with an experimental peripheral neuropathy. J Neurophysiol 69:2072–2085

    PubMed  CAS  Google Scholar 

  • LaPrairie JL, Muprhy AZ (2007) Female rats are more vulnerable to the long-term consequences of neonatal inflammatory injury. Pain 132:S124–S133

    Article  PubMed  Google Scholar 

  • Leung L, Cahill CM (2010) TNF-alpha and neuropathic pain. J Neuroinflammation 7:27

    Article  PubMed  Google Scholar 

  • Liang DY, Liao G, Wang J, Usuka J, GuoY PG et al (2006) A genetic analysis of opioid-induced hyperalgesia in mice. Anesthesiology 104:1054–1062

    Article  PubMed  CAS  Google Scholar 

  • Lleo A, Galea E, Sastre M (2007) Molecular targets of non-steroidal anti-inflammatory drugs in neurodegenerative diseases. Cell Mol Life Sci 64:1403–1418

    Article  PubMed  CAS  Google Scholar 

  • LoVerme J, Russo R, La Rana G, Fu J, Farthing J, Mattace-Raso G, Meli R, Hohmann A, Calignano A, Piomelli D et al (2006) Rapid broad-spectrum analgesia through activation of peroxisome proliferator-activated receptor-alpha. J Pharmacol Exp Ther 319:1051–1061

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Kishioka S (2009) PPAR and Pain. Int Rev Neurobiol 85:165–177

    Article  PubMed  CAS  Google Scholar 

  • Malmberg AB, Basbaum AI (1998) Partial sciatic nerve injury in the mouse as a model of neuropathic pain: behavioural and neuroanatomical correlates. Pain 76:215–222

    Article  PubMed  CAS  Google Scholar 

  • Marx N, Kehrle B, Kohlhammer BK, Grub M, Koenig W, Hombach V, Libby P, Plutzky J et al (2002) PPAR activators as anti-inflammatory mediators in human T lymphocytes: implications for atherosclerosis and transplantation-associated arteriosclerosis. Circ Res 90:703–710

    Article  PubMed  CAS  Google Scholar 

  • Mickle A, Sood M, Zhang Z, Shahmohammadi G, Sengupta JN, Miranda A (2010) Antinociceptive effects of melatonin in a rat model of post-inflammatory visceral hyperalgesia: a centrally mediated process. Pain 149:555–564

    Article  PubMed  CAS  Google Scholar 

  • Okamoto H, Iwamoto T, Kotake S, Momohara S, Yamanaka H, Kamatani N (2005) Inhibition of NF-kappaB signaling by fenofibrate, a peroxisome proliferator-activated receptor-alpha ligand, presents a therapeutic strategy for rheumatoid arthritis. Clin Exp Rheumatol 23:323–330

    PubMed  CAS  Google Scholar 

  • Ropero AB, Juan-Picó P, Rafacho A, Fuentes E, Bermúdez-Silva FJ, Roche E et al (2009) Rapid non-genomic regulation of Ca2+ signals and insulin secretion by PPAR alpha ligands in mouse pancreatic islets of Langerhans. J Endocrinol 200:127–138

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Medina J, Ledent C, Carretón O, Valverde O (2011) GPR3 orphan receptor is involved in neuropathic pain after peripheral nerve injury. Neuropharmacology 61:43–50

    Google Scholar 

  • Sandkühler J (2009) Models and Mechanisms of Hyperalgesia and Allodynia. Physiol Rev 89:707–758

    Article  PubMed  Google Scholar 

  • Sewell RD, Spencer PS (1975) Anti-nociceptive activity of narcotic agonists and partial agonists in mice given biogenic amines by intracerebroventricular injection. Psychopharmacologia 42(1):67–71

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Sanford UR, Vargas JC, Xu H, Groen A, Paulusma CC et al (2010) Strain Background Modifies Phenotypes in the ATP8B1- Deficient Mouse. PLoS One 5:e8984

    Article  PubMed  Google Scholar 

  • Shir Y, Seltzer Z (1990) A-fibers mediate mechanical hyperesthesia and allodynia and C-fibers mediate thermal hyperalgesia in a new model of causalgiform pain disorders in rats. Neurosci Lett 115(1):62–67

    Article  PubMed  CAS  Google Scholar 

  • Shir Y, Seltzer Z (2001) Heat hyperalgesia following partial sciatic ligation in rats: interacting nature and nurture. Neuroreport 12:809–813

    Article  PubMed  CAS  Google Scholar 

  • Simonin F, Valverde O, Smadja C, Slowe S, Kitchen I, Dierich A et al (1998) Disruption of the kappa-opioid receptor gene in mice enhances sensitivity to chemical visceral pain, impairs pharmacological actions of the selective kappa-agonist U-50,488H and attenuates morphine withdrawal. EMBO J 17:886–897

    Article  PubMed  CAS  Google Scholar 

  • Smith SB, Crager SE, Mogil JS (2004) Paclitaxel-induced neuropathic hypersensitivity in mice: responses in 10 inbred mouse strains. Life Sci 74:2593–2604

    Article  PubMed  CAS  Google Scholar 

  • Sommer C (2003) Determining the diagnosis from the pain pattern. Brief and stabbing or chronic and dull? MMW Fortschr Med 145:30–33

    PubMed  CAS  Google Scholar 

  • Su HF, Samsamshariat A, Fu J, Shan YX, Chen YH, Piomelli D, Wang PH (2006) Oleylethanolamide activates Ras-Erk pathway and improves myocardial function in doxorubicin-induced heart failure. Endocrinology 147:827–834

    Article  PubMed  CAS  Google Scholar 

  • Suardíaz M, Estivill-Torrus G, Goicoechea C, Bilbao A, Rodríguez de Fonseca F (2007) Analgesic properties of oleoylethanolamide (OEA) in visceral and inflammatory pain. Pain 133:99–110

    Article  PubMed  Google Scholar 

  • Taylor BK, Dadia N, Yang CB, Krishnan S, Badr M (2002) Peroxisome proliferator-activated receptor agonists inhibit inflammatory edema and hyperalgesia. Inflammation 26:121–127

    Article  PubMed  CAS  Google Scholar 

  • van Eick AJ (1967) A change in the response of the mouse in the "hot plate" analgesia-test, owing to a central action of atropine and related compounds. Acta Physiol Pharmacol Neerl 14(4):499–500

    PubMed  Google Scholar 

  • Vanden Berghe W, Vermeulen L, Delerive P, De Bosscher K, Staels B, Haegeman G (2003) A paradigm for gene regulation: inflammation, NF-kappaB and PPAR. Adv Exp Med Biol 544:181–196

    Article  PubMed  CAS  Google Scholar 

  • Watkins LR, Maier SF (2003) Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov 2:973–985

    Article  PubMed  CAS  Google Scholar 

  • Wijnvoord N, Albuquerque B, Häussler A, Myrczek T, Popp L, Tegeder I (2010) Inter-strain differences of serotonergic inhibitory pain control in inbred mice. Mol Pain 6:70

    PubMed  Google Scholar 

  • Xu HE, Stanley TB, Montana VG, Lambert MH, Shearer BG, Cobb JE et al (2002) Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARalpha. Nature 415:813–817

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Storer PD, Chavis JA, Racke MK, Drew PD (2005) Agonists for the peroxisome proliferator-activated receptor-alpha and the retinoid X receptor inhibit inflammatory responses of microglia. J Neurosci Res 81:403–411

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Chavis JA, Racke MK, Drew PD (2006) Peroxisome proliferator-activated receptor-alpha and retinoid X receptor agonists inhibit inflammatory responses of astrocytes. J Neuroimmunol 176:95–105

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Racke MK, Drew PD (2007) Peroxisome proliferator-activated receptor-alpha agonist fenofibrate regulates IL-12 family cytokine expression in the CNS: relevance to multiple sclerosis. J Neurochem 103:1801–1810

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by grants to EFE from Fundació La Marató TV3 (Barcelona), Plan Andaluz de Investigación (BIO127, Junta de Andalucía), and Ministerio de Sanidad (PNSD, 2009I039). OV was supported by Ministerio de Sanidad (PNSD, 2010) and Generalitat de Catalunya (SGR 2009/684). EFE and OV were supported by Ministerio de Sanidad (RETICS, RD06/001/002 and RD06/0001/1001; Instituto Carlos III, co-financing with FEDER, European Fund for Regional Development), and Ministerio de Ciencia e Innovación and FEDER Funds (BFU2008-01060 to EFE and SAF2010/15793 to OV). The authors thank Dr. Fernando Rodriguez de Fonseca (Fundación IMABIS, Malaga) for the generous gift of PPAR-α null mice.

Disclosure/Conflict of interest

The author(s) declare that, except for income received from my primary employer, no financial support or compensation has been received from any individual or corporate entity over the past three years for research or professional service and there are no personal financial holdings that could be perceived as constituting a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olga Valverde or Emilio Fernandez-Espejo.

Additional information

Olga Valverde and Emilio Fernandez-Espejo equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Medina, J., Flores, J.A., Tasset, I. et al. Alteration of neuropathic and visceral pain in female C57BL/6J mice lacking the PPAR-α gene. Psychopharmacology 222, 477–488 (2012). https://doi.org/10.1007/s00213-012-2662-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2662-8

Keywords

Navigation