Advertisement

Psychopharmacology

, Volume 222, Issue 2, pp 293–302 | Cite as

MDMA enhances “mind reading” of positive emotions and impairs “mind reading” of negative emotions

  • Cédric M. Hysek
  • Gregor Domes
  • Matthias E. LiechtiEmail author
Original Investigation

Abstract

Rationale

3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) increases sociability. The prosocial effects of MDMA may result from the release of the “social hormone” oxytocin and associated alterations in the processing of socioemotional stimuli.

Materials and methods

We investigated the effects of MDMA (125 mg) on the ability to infer the mental states of others from social cues of the eye region in the Reading the Mind in the Eyes Test. The study included 48 healthy volunteers (24 men, 24 women) and used a double-blind, placebo-controlled, within-subjects design. A choice reaction time test was used to exclude impairments in psychomotor function. We also measured circulating oxytocin and cortisol levels and subjective drug effects.

Results

MDMA differentially affected mind reading depending on the emotional valence of the stimuli. MDMA enhanced the accuracy of mental state decoding for positive stimuli (e.g., friendly), impaired mind reading for negative stimuli (e.g., hostile), and had no effect on mind reading for neutral stimuli (e.g., reflective). MDMA did not affect psychomotor performance, increased circulating oxytocin and cortisol levels, and produced subjective prosocial effects, including feelings of being more open, talkative, and closer to others.

Conclusions

The shift in the ability to correctly read socioemotional information toward stimuli associated with positive emotional valence, together with the prosocial feelings elicited by MDMA, may enhance social approach behavior and sociability when MDMA is used recreationally and facilitate therapeutic relationships in MDMA-assisted psychotherapeutic settings.

Keywords

Emotion MDMA Oxytocin Cortisol Social cognition Face recognition 

Notes

Acknowledgments

We thank R. Brugger, V. Nicola, C. Bläsi, S. Müller, and S. Purschke for their assistance in study management and M. Arends for editorial assistance. This work was supported by the Swiss National Science Foundation (grant no. 323230_126231) and University of Basel (grant no. DPH2037).

Conflict of interest

The authors report no biomedical financial interest or potential conflict of interest.

References

  1. Anavekar SN, Jarrott B, Toscano M, Louis WJ (1982) Pharmacokinetic and pharmacodynamic studies of oral clonidine in normotensive subjects. Eur J Clin Pharmacol 23:1–5PubMedCrossRefGoogle Scholar
  2. Baron-Cohen S, Wheelwright S, Hill J, Raste Y, Plumb I (2001) The "Reading the Mind in the Eyes" Test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. J Child Psychol Psychiatry 42:241–251PubMedCrossRefGoogle Scholar
  3. Bedi G, Phan KL, Angstadt M, de Wit H (2009) Effects of MDMA on sociability and neural response to social threat and social reward. Psychopharmacology (Berl) 207:73–83CrossRefGoogle Scholar
  4. Bedi G, Hyman D, de Wit H (2010) Is ecstasy an "empathogen"? Effects of ± 3,4-methylenedioxymethamphetamine on prosocial feelings and identification of emotional states in others. Biol Psychiatry 68:1134–1140PubMedCrossRefGoogle Scholar
  5. Bopp G, Bender W, Schütz CG (2005) Validierung der deutschen Version des Addiction Research Center Inventory (ARCI). Suchtmedizin 7:152–153Google Scholar
  6. Broadbear JH, Tunstall B, Beringer K (2011) Examining the role of oxytocin in the interoceptive effects of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") using a drug discrimination paradigm in the rat. Addict Biol 16:202–214PubMedCrossRefGoogle Scholar
  7. Derogatis LR, Rickels K, Rock AF (1976) The SCL-90 and the MMPI: a step in the validation of a new self-report scale. Br J Psychiatry 128:280–289PubMedCrossRefGoogle Scholar
  8. Di Simplicio M, Massey-Chase R, Cowen PJ, Harmer CJ (2009) Oxytocin enhances processing of positive versus negative emotional information in healthy male volunteers. J Psychopharmacol 23:241–248PubMedCrossRefGoogle Scholar
  9. Domes G, Heinrichs M, Glascher J, Buchel C, Braus DF, Herpertz SC (2007a) Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol Psychiatry 62:1187–1190PubMedCrossRefGoogle Scholar
  10. Domes G, Heinrichs M, Michel A, Berger C, Herpertz SC (2007b) Oxytocin improves "mind-reading" in humans. Biol Psychiatry 61:731–733PubMedCrossRefGoogle Scholar
  11. Domes G, Lischke A, Berger C, Grossmann A, Hauenstein K, Heinrichs M, Herpertz SC (2010) Effects of intranasal oxytocin on emotional face processing in women. Psychoneuroendocrinology 35:83–93PubMedCrossRefGoogle Scholar
  12. Dumont GJ, Sweep FC, van der Steen R, Hermsen R, Donders AR, Touw DJ, van Gerven JM, Buitelaar JK, Verkes RJ (2009) Increased oxytocin concentrations and prosocial feelings in humans after ecstasy (3,4-methylenedioxymethamphetamine) administration. Soc Neurosci 4:359–366PubMedCrossRefGoogle Scholar
  13. Fahrenberg J, Hampel R, Selg H (1984) Das Freiburger Persönlichkeitsinventar (FPI). Hogrefe, Göttingen, GermanyGoogle Scholar
  14. Farre M, Abanades S, Roset PN, Peiro AM, Torrens M, O'Mathuna B, Segura M, de la Torre R (2007) Pharmacological interaction between 3,4-methylenedioxymethamphetamine (ecstasy) and paroxetine: pharmacological effects and pharmacokinetics. J Pharmacol Exp Ther 323:954–962PubMedCrossRefGoogle Scholar
  15. Fertuck EA, Jekal A, Song I, Wyman B, Morris MC, Wilson ST, Brodsky BS, Stanley B (2009) Enhanced 'Reading the Mind in the Eyes' in borderline personality disorder compared to healthy controls. Psychol Med 39:1979–1988PubMedCrossRefGoogle Scholar
  16. Forsling ML, Fallon JK, Shah D, Tilbrook GS, Cowan DA, Kicman AT, Hutt AJ (2002) The effect of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") and its metabolites on neurohypophysial hormone release from the isolated rat hypothalamus. Br J Pharmacol 135:649–656PubMedCrossRefGoogle Scholar
  17. Guastella AJ, Mitchell PB, Mathews F (2008) Oxytocin enhances the encoding of positive social memories in humans. Biol Psychiatry 64:256–258PubMedCrossRefGoogle Scholar
  18. Guastella AJ, Einfeld SL, Gray KM, Rinehart NJ, Tonge BJ, Lambert TJ, Hickie IB (2010) Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol Psychiatry 67:692–694PubMedCrossRefGoogle Scholar
  19. Harkness KL, Sabbagh MA, Jacobson JA, Chowdrey NK, Chen T (2005) Enhanced accuracy of mental state decoding in dysphoric college students. Cogn Emotion 19:999–1025CrossRefGoogle Scholar
  20. Harris DS, Baggott M, Mendelson JH, Mendelson JE, Jones RT (2002) Subjective and hormonal effects of 3,4-methylenedioxymethamphetamine (MDMA) in humans. Psychopharmacology (Berl) 162:396–405CrossRefGoogle Scholar
  21. Haschke M, Suter K, Hofmann S, Witschi R, Frohlich J, Imanidis G, Drewe J, Briellmann TA, Dussy FE, Krahenbuhl S, Surber C (2010) Pharmacokinetics and pharmacodynamics of nasally delivered midazolam. Br J Clin Pharmacol 69:607–616PubMedCrossRefGoogle Scholar
  22. Hurlemann R, Patin A, Onur OA, Cohen MX, Baumgartner T, Metzler S, Dziobek I, Gallinat J, Wagner M, Maier W, Kendrick KM (2010) Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. J Neurosci 30:4999–5007PubMedCrossRefGoogle Scholar
  23. Hysek CM, Simmler LD, Ineichen M, Grouzmann E, Hoener MC, Brenneisen R, Huwyler J, Liechti ME (2011) The norepinephrine transporter inhibitor reboxetine reduces stimulant effects of MDMA ("ecstasy") in humans. Clin Pharmacol Ther 90:246–255PubMedCrossRefGoogle Scholar
  24. Hysek CM, Brugger R, Simmler LD, Bruggisser M, Doncelli M, Grouzmann E, Hoener MC, Liechti ME (2012) Effects of the α2-adrenergic agonist clonidine on the pharmacodynamics and pharmacokinetics of methylenedioxymethamphetamine in healthy volunteers. J Pharmacol Exp Ther 340:286–294PubMedCrossRefGoogle Scholar
  25. Johansen PO, Krebs TS (2009) How could MDMA (ecstasy) help anxiety disorders? A neurobiological rationale. J Psychopharmacol 23:389–391PubMedCrossRefGoogle Scholar
  26. Kirsch P, Esslinger C, Chen Q, Mier D, Lis S, Siddhanti S, Gruppe H, Mattay VS, Gallhofer B, Meyer-Lindenberg A (2005) Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci 25:11489–11493PubMedCrossRefGoogle Scholar
  27. Knutson B, Cooper JC (2005) Functional magnetic resonance imaging of reward prediction. Curr Opin Neurol 18:411–417PubMedCrossRefGoogle Scholar
  28. Landgraf R, Neumann I, Holsboer F, Pittman QJ (1995) Interleukin-1β stimulates both central and peripheral release of vasopressin and oxytocin in the rat. Eur J Neurosci 7:592–598PubMedCrossRefGoogle Scholar
  29. Liechti ME, Vollenweider FX (2000) The serotonin uptake inhibitor citalopram reduces acute cardiovascular and vegetative effects of 3,4-methylenedioxymethamphetamine ('ecstasy') in healthy volunteers. J Psychopharmacol 14:269–274PubMedCrossRefGoogle Scholar
  30. Liechti ME, Baumann C, Gamma A, Vollenweider FX (2000) Acute psychological effects of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") are attenuated by the serotonin uptake inhibitor citalopram. Neuropsychopharmacology 22:513–521PubMedCrossRefGoogle Scholar
  31. Liechti ME, Gamma A, Vollenweider FX (2001) Gender differences in the subjective effects of MDMA. Psychopharmacology (Berl) 154:161–168CrossRefGoogle Scholar
  32. Marsh AA, Yu HH, Pine DS, Blair RJ (2010) Oxytocin improves specific recognition of positive facial expressions. Psychopharmacology (Berl) 209:225–232CrossRefGoogle Scholar
  33. Martin WR, Sloan JW, Sapira JD, Jasinski DR (1971) Physiologic, subjective, and behavioral effects of amphetamine, methamphetamine, ephedrine, phenmetrazine, and methylphenidate in man. Clin Pharmacol Ther 12:245–258PubMedGoogle Scholar
  34. Mas M, Farre M, de la Torre R, Roset PN, Ortuno J, Segura J, Cami J (1999) Cardiovascular and neuroendocrine effects and pharmacokinetics of 3, 4-methylenedioxymethamphetamine in humans. J Pharmacol Exp Ther 290:136–145PubMedGoogle Scholar
  35. Meyer-Lindenberg A, Domes G, Kirsch P, Heinrichs M (2011) Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci 12:524–538PubMedCrossRefGoogle Scholar
  36. Mithoefer MC, Wagner MT, Mithoefer AT, Jerome I, Doblin R (2010) The safety and efficacy of ±3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J Psychopharmacol 25:439–452PubMedCrossRefGoogle Scholar
  37. Neumann ID (2008) Brain oxytocin: a key regulator of emotional and social behaviours in both females and males. J Neuroendocrinol 20:858–865PubMedCrossRefGoogle Scholar
  38. Nieuwenhuis S, van Nieuwpoort IC, Veltman DJ, Drent ML (2007) Effects of the noradrenergic agonist clonidine on temporal and spatial attention. Psychopharmacology (Berl) 193:261–269CrossRefGoogle Scholar
  39. Roelands B, Goekint M, Heyman E, Piacentini MF, Watson P, Hasegawa H, Buyse L, Pauwels F, De Schutter G, Meeusen R (2008) Acute norepinephrine reuptake inhibition decreases performance in normal and high ambient temperature. J Appl Physiol 105:206–212PubMedCrossRefGoogle Scholar
  40. Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41PubMedCrossRefGoogle Scholar
  41. Schachinger H, Cox D, Linder L, Brody S, Keller U (2003) Cognitive and psychomotor function in hypoglycemia: response error patterns and retest reliability. Pharmacol Biochem Behav 75:915–920PubMedCrossRefGoogle Scholar
  42. Schmitz N, Hartkamp N, Kiuse J, Franke GH, Reister G, Tress W (2000) The Symptom Check-List-90-R (SCL-90-R): a German validation study. Qual Life Res 9:185–193PubMedCrossRefGoogle Scholar
  43. Schulze L, Lischke A, Greif J, Herpertz SC, Heinrichs M, Domes G (2011) Oxytocin increases recognition of masked emotional faces. Psychoneuroendocrinology 36:1378–1382PubMedCrossRefGoogle Scholar
  44. Simmler LD, Hysek CM, Huwyler J, Liechti ME (2011a) Duloxetine prevents 3,4-methylenedioxymethamphetamine-induced serotonin release in vitro and psychostimulant effects in healthy subjects. Eur Neuropsychopharmacol 21(S3):S262CrossRefGoogle Scholar
  45. Simmler LD, Hysek CM, Liechti ME (2011b) Sex differences in the effects of MDMA (ecstasy) on plasma copeptin in healthy subjects. J Clin Endocrinol Metab 96:2844–2850PubMedCrossRefGoogle Scholar
  46. Smeets T, Dziobek I, Wolf OT (2009) Social cognition under stress: differential effects of stress-induced cortisol elevations in healthy young men and women. Horm Behav 55:507–513PubMedCrossRefGoogle Scholar
  47. Spielberger CD, Gorsuch RC, Lusheme RE (1970) Manual for the Stait Trait Anxiety Inventory. Consulting Psychologists Press, Palo AltoGoogle Scholar
  48. Tancer M, Johanson CE (2007) The effects of fluoxetine on the subjective and physiological effects of 3,4-methylenedioxymethamphetamine (MDMA) in humans. Psychopharmacology 189:565–573PubMedCrossRefGoogle Scholar
  49. Thompson MR, Callaghan PD, Hunt GE, Cornish JL, McGregor IS (2007) A role for oxytocin and 5-HT1A receptors in the prosocial effects of 3,4 methylenedioxymethamphetamine ("ecstasy"). Neuroscience 146:509–514PubMedCrossRefGoogle Scholar
  50. Thompson MR, Hunt GE, McGregor IS (2009) Neural correlates of MDMA ("ecstasy")-induced social interaction in rats. Soc Neurosci 4:60–72PubMedCrossRefGoogle Scholar
  51. White TL, Justice AJ, de Wit H (2002) Differential subjective effects of D-amphetamine by gender, hormone levels and menstrual cycle phase. Pharmacol Biochem Behav 73:729–741PubMedCrossRefGoogle Scholar
  52. Wittchen HU, Wunderlich U, Gruschwitz S, Zaudig M (1997) SKID-I: Strukturiertes Klinisches Interview für DSM-IV. Hogrefe, GöttingenGoogle Scholar
  53. Wolff K, Tsapakis EM, Winstock AR, Hartley D, Holt D, Forsling ML, Aitchison KJ (2006) Vasopressin and oxytocin secretion in response to the consumption of ecstasy in a clubbing population. J Psychopharmacol 20:400–410PubMedCrossRefGoogle Scholar
  54. Zald DH (2003) The human amygdala and the emotional evaluation of sensory stimuli. Brain Res Brain Res Rev 41:88–123PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Cédric M. Hysek
    • 1
  • Gregor Domes
    • 2
  • Matthias E. Liechti
    • 1
    • 3
    Email author
  1. 1.Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Internal MedicineUniversity Hospital and University of BaselBaselSwitzerland
  2. 2.Laboratory for Biological and Personality Psychology, Department of PsychologyUniversity of FreiburgFreiburg im BreisgauGermany
  3. 3.Division of Clinical Pharmacology and ToxicologyUniversity Hospital BaselBaselSwitzerland

Personalised recommendations