Skip to main content
Log in

Striatal and extrastriatal dopamine D2 receptor occupancy by the partial agonist antipsychotic drug aripiprazole in the human brain: a positron emission tomography study with [11C]raclopride and [11C]FLB457

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Second-generation antipsychotics demonstrate clinical efficacy with fewer extrapyramidal side effects compared with first-generation antipsychotics. One of the proposed explanations is the hypothesis of preferential extrastriatal dopamine D2 receptor occupancy (limbic selectivity) by antipsychotics. In the present study, we focused on aripiprazole, which has a unique pharmacological profile with partial agonism at dopamine D2 receptors and the minimal risk of extrapyramidal side effects. Previous positron emission tomography (PET) studies using high-affinity radioligands for dopamine D2 receptors have reported inconsistent results regarding regional differences of dopamine D2 receptor occupancy by aripiprazole.

Objective

To test the hypothesis of preferential binding to extrastriatal dopamine D2 receptors by aripiprazole, we investigated its regional dopamine D2 receptor occupancies in healthy young subjects.

Materials and methods

Using PET and two radioligands with different affinities for dopamine D2 receptors, [11C]raclopride and [11C]FLB457, striatal and extrastriatal dopamine D2 receptor bindings at baseline and after oral administration of 6 mg aripiprazole were measured in 11 male healthy subjects.

Results

Our data showed that dopamine D2 receptor occupancies in the striatum measured with [11C]raclopride were 70.1% and 74.1%, with the corresponding values for the extrastriatal regions measured with [11C]FLB457 ranging from 46.6% to 58.4%.

Conclusions

In the present study, preferential extrastriatal dopamine D2 receptor occupancy by aripiprazole was not observed. Our data suggest partial agonism at dopamine D2 receptors is the most likely explanation for the minimal risk of extrapyramidal side effects in the treatment by aripiprazole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arakawa R, Ito H, Takano A, Takahashi H, Morimoto T, Sassa T, Ohta K, Kato M, Okubo Y, Suhara T (2007) Dose-finding study of paliperidone ER based on striatal and extrastriatal dopamine D2 receptor occupancy in patients with schizophrenia. Psychopharmacology 197:229–235

    Article  PubMed  Google Scholar 

  • Arakawa R, Ito H, Okumura M, Takano A, Takahashi H, Takano H, Okubo Y, Suhara T (2010) Extrastriatal dopamine D2 receptor occupancy in olanzapine-treated patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 260:345–350

    Article  PubMed  Google Scholar 

  • Bhattacharjee J, El-Sayeh HGG (2008) Aripiprazole versus typical antipsychotic drugs for schizophrenia. Cochrane Database of Systematic Reviews: CD006617

  • Bigliani V, Mulligan RS, Acton PD, Visvikis D, Ell PJ, Stephenson C, Kerwin RW, Pilowsky LS (1999) In vivo occupancy of striatal and temporal cortical D2/D3 dopamine receptors by typical antipsychotic drugs. [123I]epidepride single photon emission tomography (SPECT) study. Br J Psychiatry 175:231–238

    Article  PubMed  CAS  Google Scholar 

  • Bressan RA, Erlandsson K, Jones HM, Mulligan RS, Ell PJ, Pilowsky LS (2003) Optimizing limbic selective D2/D3 receptor occupancy by risperidone: a [123I]-epidepride SPET study. J Clin Psychopharmacol 23:5–14

    Article  PubMed  CAS  Google Scholar 

  • Brix G, Zaers J, Adam LE, Bellemann ME, Ostertag H, Trojan H, Haberkorn U, Doll J, Oberdorfer F, Lorenz WJ (1997) Performance evaluation of a whole-body PET scanner using the NEMA protocol. J Nucl Med 38:1614–1623

    PubMed  CAS  Google Scholar 

  • Burris KD, Molski T, Xu C, Ryan E, Tottori K, Kikuchi T, Yocca F, Molinoff P (2002) Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 302:381–389

    Article  PubMed  CAS  Google Scholar 

  • Davies MA, Sheffler DJ, Roth BL (2006) Aripiprazole: a novel atypical antipsychotic drug with a uniquely robust pharmacology. CNS Drug Rev 10:317–336

    Article  Google Scholar 

  • Erlandsson K, Bressan RA, Mulligan RS, Ell PJ, Cunningham VJ, Pilowsky LS (2003) Analysis of D2 dopamine receptor occupancy with quantitative SPET using the high-affinity ligand [123I]epidepride: resolving conflicting findings. Neuroimage 19:1205–1214

    Article  PubMed  Google Scholar 

  • Farde L, Wiesel FA, Stone-Elander S, Halldin C, Nordström AL, Hall H, Sedvall G (1990) D2 dopamine receptors in neuroleptic-naive schizophrenic patients. A positron emission tomography study with [11 C]raclopride. Arch Gen Psychiatry 47:213–219

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Nordström AL, Wiesel FA, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 49:538–544

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Hall H, Pauli S, Halldin C (1995) Variability in D2-dopamine receptor density and affinity: a PET study with [11C]raclopride in man. Synapse 20:200–208

    Article  PubMed  CAS  Google Scholar 

  • Fox PT, Mintun MA, Reiman EM, Raichle ME (1988) Enhanced detection of focal brain responses using intersubject averaging and change-distribution analysis of subtracted PET images. J Cereb Blood Flow Metab 8:642–653

    Article  PubMed  CAS  Google Scholar 

  • Gründer G, Landvogt C, Vernaleken I, Buchholz H-G, Ondracek J, Siessmeier T, Härtter S, Schreckenberger M, Stoeter P, Hiemke C, Rösch F, Wong DF, Bartenstein P (2006) The striatal and extrastriatal D2/D3 receptor-binding profile of clozapine in patients with schizophrenia. Neuropsychopharmacology 31:1027–1035

    Article  PubMed  Google Scholar 

  • Gründer G, Fellows C, Janouschek H, Veselinovic T, Boy C, Bröcheler A, Kirschbaum KM, Hellmann S, Spreckelmeyer KM, Hiemke C, Rösch F, Schaefer WM, Vernaleken I (2008) Brain and plasma pharmacokinetics of aripiprazole in patients with schizophrenia: an [18F]fallypride PET study. Am J Psychiatry 165:988–995

    Article  PubMed  Google Scholar 

  • Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ (1997) Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 6:279–287

    Article  PubMed  CAS  Google Scholar 

  • Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L (1994) Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology 11:245–256

    Article  PubMed  CAS  Google Scholar 

  • Hall H, Farde L, Halldin C, Hurd Y, Pauli S (1996) Autoradiographic localization of extrastriatal D2–dopamine receptors in the human brain using [125I] epidepride. Synapse 23:115–123

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Hietala J, Blomqvist G, Halldin C, Farde L (1998) Comparison of the transient equilibrium and continuous infusion method for quantitative PET analysis of [11C]raclopride binding. J Cereb Blood Flow Metab 18:941–950

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Sudo Y, Suhara T, Okubo Y, Halldin C, Farde L (2001) Error Analysis for quantification of [11C]FLB 457 binding to extrastriatal D2 dopamine receptors in the human brain. Neuroimage 13:531–539

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Takahashi H, Arakawa R, Takano H, Suhara T (2008) Normal database of dopaminergic neurotransmission system in human brain measured by positron emission tomography. Neuroimage 39:555–565

    Article  PubMed  Google Scholar 

  • Ito H, Arakawa R, Takahashi H, Takano H, Okumura M, Otsuka T, Ikoma Y, Shidahara M, Suhara T (2009) No regional difference in dopamine D2 receptor occupancy by the second-generation antipsychotic drug risperidone in humans: a positron emission tomography study. Int J Neuropsychopharmacol 12:667–675

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Remington G (1996) Serotonin–dopamine interaction and its relevance to schizophrenia. Am J Psychiatry 153:466–476

    PubMed  CAS  Google Scholar 

  • Kapur S, Zipursky RB, Remington G (1999) Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiatry 156:286–293

    PubMed  CAS  Google Scholar 

  • Kapur S, Zipursky R, Jones C, Remington G, Houle S (2000) Relationship between dopamine D2 occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 157:514–520

    Article  PubMed  CAS  Google Scholar 

  • Kegeles LS, Slifstein M, Frankle WG, Xu X, Hackett E, Bae S-A, Gonzales R, Kim J-H, Alvarez B, Gil R, Laruelle M, Abi-Dargham A (2008) Dose–occupancy study of striatal and extrastriatal dopamine D2 receptors by aripiprazole in schizophrenia with PET and [18F]Fallypride. Neuropsychopharmacology 33:3111–3125

    Article  PubMed  CAS  Google Scholar 

  • Kessler RM, Ansari MS, Riccardi P, Li R, Jayathilake K, Dawant B, Meltzer HY (2005) Occupancy of striatal and extrastriatal dopamine D2/D3 receptors by olanzapine and haloperidol. Neuropsychopharmacology 30:2283–2289

    Article  PubMed  CAS  Google Scholar 

  • Kessler RM, Ansari MS, Riccardi P, Li R, Jayathilake K, Dawant B, Meltzer HY (2006) Occupancy of striatal and extrastriatal dopamine D2 receptors by clozapine and quetiapine. Neuropsychopharmacology 31:1991–2001

    Article  PubMed  CAS  Google Scholar 

  • Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153–158

    Article  PubMed  CAS  Google Scholar 

  • Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ, Frackowiak RS (1996) Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab 16:42–52

    Article  PubMed  CAS  Google Scholar 

  • Lawler CP, Prioleau C, Lewis MM, Mak C, Jiang D, Schetz JA, Gonzalez AM, Sibley DR, Mailman RB (1999) Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology 20:612–627

    Article  PubMed  CAS  Google Scholar 

  • Leucht S, Corves C, Arbter D, Engel RR, Li C, Davis JM (2009) Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet 373:31–41

    Article  PubMed  CAS  Google Scholar 

  • Nordström AL, Farde L, Wiesel FA, Forslund K, Pauli S, Halldin C, Uppfeldt G (1993) Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry 33:227–235

    Article  PubMed  Google Scholar 

  • Ohmori T, Miura S, Yamashita I, Koyama T, Yu M, Yagi G, Murasaki M, Kudo Y, Sakai T, Saito M, Watanabe M, Nakane M (2006) Long-term study to examine the efficacy and safety of aripiprazole for schizophrenia—extended study from a late phase II study. Jpn J Clin Psychopharmacol 9:453–474

    Google Scholar 

  • Olsson H, Farde L (2001) Potentials and pitfalls using high affinity radioligands in PET and SPET determinations on regional drug induced D2 receptor occupancy—a simulation study based on experimental data. Neuroimage 14:936–945

    Article  PubMed  CAS  Google Scholar 

  • Pilowsky LS, Mulligan RS, Acton PD, Ell PJ, Costa DC, Kerwin RW (1997) Limbic selectivity of clozapine. Lancet 350:490–491

    Article  PubMed  CAS  Google Scholar 

  • Sudo Y, Suhara T, Inoue M, Ito H, Suzuki K, Saijo T, Halldin C, Farde L (2001) Reproducibility of [11C]FLB 457 binding in extrastriatal regions. Nucl Med Commun 22:1215–1221

    Article  PubMed  CAS  Google Scholar 

  • Suhara T, Sudo Y, Okauchi T, Maeda J, Kawabe K, Suzuki K, Okubo Y, Nakashima Y, Ito H, Tanada S, Halldin C, Farde L (1999) Extrastriatal dopamine D2 receptor density and affinity in the human brain measured by 3D PET. Int J Neuropsychopharmacol 2:73–82

    Article  PubMed  CAS  Google Scholar 

  • Suhara T, Okubo Y, Yasuno F, Sudo Y, Inoue M, Ichimiya T, Nakashima Y, Nakayama K, Tanada S, Suzuki K, Halldin C, Farde L (2002) Decreased dopamine D2 receptor binding in the anterior cingulate cortex in schizophrenia. Arch Gen Psychiatry 59:25–30

    Article  PubMed  CAS  Google Scholar 

  • Takano A, Suhara T, Ikoma Y, Yasuno F, Maeda J, Ichimiya T, Sudo Y, Inoue M, Okubo Y (2004) Estimation of the time-course of dopamine D2 receptor occupancy in living human brain from plasma pharmacokinetics of antipsychotics. Int J Neuropsychopharmacol 7:19–26

    Article  PubMed  CAS  Google Scholar 

  • Talvik M, Nordström A, Nyberg S (2001) No support for regional selectivity in clozapine-treated patients: a PET study with [11C] raclopride and [11C] FLB 457. Am J Psychiatry 158:926–930

    PubMed  CAS  Google Scholar 

  • Watson C, Newport D, Casey M (1996) A single scatter simulation technique for scatter correction in 3D PET. In: Grangeat P, Amans J-L (eds) Three-dimensional image reconstruction in radiology and nuclear medicine. Kluwer Academic, Dordrecht, pp 255–268

    Google Scholar 

  • Xiberas X, Martinot JL, Mallet L, Artiges E, Loc HC, Mazière B, Paillère-Martinot ML (2001) Extrastriatal and striatal D2 dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. Br J Psychiatry 179:503–508

    Article  PubMed  CAS  Google Scholar 

  • Yokoi F, Gründer G, Biziere K, Stephane M, Dogan AS, Dannals RF, Ravert H, Suri A, Bramer S, Wong DF (2002) Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and [11C]raclopride. Neuropsychopharmacology 27:248–259

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for the Molecular Imaging Program from the Ministry of Education, Culture, Sports, Science and Technology, Japanese Government. We thank Mr. Katsuyuki Tanimoto and Mr. Takahiro Shiraishi for their assistance in performing the PET experiments, Ms. Kazuko Suzuki and Ms. Izumi Izumida for their help as clinical research coordinators, Dr. Takaaki Mori, Dr. Hajime Fukuda and Ms. Yoko Eguchi for their clinical support, and Ms. Mika Omatsu and Ms. Rie Inagaki for their help in performing MRI scanning.

Statement of interest

The authors declare that no financial support or compensation has been received from any individual or corporate entity for research or professional service, and there is no personal financial holding that could be perceived as constituting a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahata, K., Ito, H., Takano, H. et al. Striatal and extrastriatal dopamine D2 receptor occupancy by the partial agonist antipsychotic drug aripiprazole in the human brain: a positron emission tomography study with [11C]raclopride and [11C]FLB457. Psychopharmacology 222, 165–172 (2012). https://doi.org/10.1007/s00213-011-2633-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2633-5

Keywords

Navigation