Skip to main content
Log in

Behavioral effects of α,α,β,β-tetradeutero-5-MeO-DMT in rats: comparison with 5-MeO-DMT administered in combination with a monoamine oxidase inhibitor

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Ayahuasca is a psychoactive tea prepared from a combination of plants that contain a hallucinogenic tryptamine and monoamine oxidase inhibitors (MAOIs). Behavioral pattern monitor (BPM) experiments demonstrated that the combination of 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and a behaviorally inactive dose of an MAOA inhibitor such as harmaline or clorgyline induces biphasic effects on locomotor activity in rats, initially reducing locomotion and then increasing activity as time progresses.

Objectives

The present study investigated whether the biphasic locomotor profile induced by the combination of 5-MeO-DMT and an MAOI is a consequence of a reduction in the rate of 5-MeO-DMT metabolism. This hypothesis was tested using a deuterated derivative of 5-MeO-DMT (α,α,β,β-tetradeutero-5-MeO-DMT) that is resistant to metabolism by MAO.

Results

Confirming our previous findings, 1.0 mg/kg 5-MeO-DMT (s.c.) had biphasic effects on locomotor activity in rats pretreated with a behaviorally inactive dose of the nonselective MAOI pargyline (10 mg/kg). Administration of 5-MeO-DMT alone, even at doses greater than 1.0 mg/kg, produced only reductions in locomotor activity. Although low doses of α,α,β,β-tetradeutero-5-MeO-DMT (0.3 and 1.0 mg/kg, s.c.) produced only hypoactivity in the BPM, a dose of 3.0 mg/kg induced a biphasic locomotor profile similar to that produced by the combination of 5-MeO-DMT and an MAOI. Receptor binding studies demonstrated that deuterium substitution had little effect on the affinity of 5-MeO-DMT for a wide variety of neurotransmitter binding sites.

Conclusions

The finding with α,α,β,β-tetradeutero-5-MeO-DMT indicates that the hyperactivity induced by 5-MeO-DMT after MAO inhibition is a consequence of reduced metabolism of 5-MeO-DMT, leading to prolonged occupation of central serotonin receptors. These results demonstrate that deuterated tryptamines may be useful in behavioral and pharmacological studies to mimic the effects of tryptamine/MAOI combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams L, Geyer MA (1985a) Effects of DOM and DMT in a proposed animal model of hallucinogenic activity. Prog Neuropsychopharmacol Biol Psychiatry 9:121–132

    Article  PubMed  CAS  Google Scholar 

  • Adams L, Geyer MA (1985b) A proposed animal model for hallucinogens based on LSD's effects on patterns of exploration in rats. Behav Neurosci 99:881–900

    Article  PubMed  CAS  Google Scholar 

  • Agurell S, Holmstedt B, Lindgren JE (1968) Alkaloid content of Banisteriopsis rusbyana. Am J Pharm Sci Support Public Health 140:148–151

    PubMed  CAS  Google Scholar 

  • Agurell S, Holmstedt B, Lindgren JE (1969) Metabolism of 5-methoxy-N,-N dimethyltryptamine-14C in the rat. Biochem Pharmacol 18:2771–2781

    Article  PubMed  CAS  Google Scholar 

  • Anonymous (2010) Schedules of controlled substances: placement of 5-methoxy-N,N-dimethyltryptamine into Schedule I of the Controlled Substances Act. Final rule. Fed Regist 75:79296–79300

    Google Scholar 

  • Barker SA, Beaton JM, Christian ST, Monti JA, Morris PE (1982) Comparison of the brain levels of N,N-dimethyltryptamine and α, α, β, β-tetradeutero-N,N-dimethyltryptamine following intraperitoneal injection. The in vivo kinetic isotope effect. Biochem Pharmacol 31:2513–2516

    Article  PubMed  CAS  Google Scholar 

  • Barker SA, Beaton JM, Christian ST, Monti JA, Morris PE (1984) In vivo metabolism of α, α, β, β-tetradeutero-N, N-dimethyltryptamine in rodent brain. Biochem Pharmacol 33:1395–1400

    Article  PubMed  CAS  Google Scholar 

  • Beaton JM, Barker SA, Liu WF (1982) A comparison of the behavioral effects of proteo-and deutero-N, N-dimethyltryptamine. Pharmacol Biochem Behav 16:811–814

    Article  PubMed  CAS  Google Scholar 

  • Brush DE, Bird SB, Boyer EW (2004) Monoamine oxidase inhibitor poisoning resulting from internet misinformation on illicit substances. J Toxicol Clin Toxicol 42:191–195

    Article  PubMed  CAS  Google Scholar 

  • Carter OL, Burr DC, Pettigrew JD, Wallis GM, Hasler F, Vollenweider FX (2005) Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1A and 2A receptors. J Cogn Neurosci 17:1497–1508

    Article  PubMed  Google Scholar 

  • Carter OL, Hasler F, Pettigrew JD, Wallis GM, Liu GB, Vollenweider FX (2007) Psilocybin links binocular rivalry switch rate to attention and subjective arousal levels in humans. Psychopharmacology (Berl) 195:415–424

    Article  CAS  Google Scholar 

  • Christoph GR, Kuhn DM, Jacobs BL (1977) Electrophysiological evidence for a dopaminergic action of LSD: depression of unit activity in the substantia nigra of the rat. Life Sci 21:1585–1596

    Article  PubMed  CAS  Google Scholar 

  • Dyck LE, Boulton AA (1986) Effect of deuterium substitution on the disposition of intraperitoneal tryptamine. Biochem Pharmacol 35:2893–2896

    Article  PubMed  CAS  Google Scholar 

  • Egan C, Grinde E, Dupre A, Roth BL, Hake M, Teitler M, Herrick-Davis K (2000) Agonist high and low affinity state ratios predict drug intrinsic activity and a revised ternary complex mechanism at serotonin 5-HT(2A) and 5-HT(2C) receptors. Synapse 35:144–150

    Article  PubMed  CAS  Google Scholar 

  • Gessner PK, Khairallah PA, McIsaac WM, Page IH (1960) The relationship between the metabolic fate and pharmacological actions of serotonin, bufotenine and psilocybin. J Pharmacol Exp Ther 130:126–133

    PubMed  CAS  Google Scholar 

  • Geyer MA (1990) Approaches to the characterization of drug effects on locomotor activity in rodents. In: Adler MW, Cowan A (eds) Modern methods in pharmacology: testing and evaluation of drugs of abuse. Wiley-Liss, New York, pp 81–99

    Google Scholar 

  • Geyer MA, Light RK, Rose GJ, Petersen LR, Horwitt DD, Adams LM, Hawkins RL (1979) A characteristic effect of hallucinogens on investigatory responding in rats. Psychopharmacology 65:35–40

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Russo PV, Masten VL (1986) Multivariate assessment of locomotor behavior: pharmacological and behavioral analyses. Pharmacol Biochem Behav 25:277–288

    Article  PubMed  CAS  Google Scholar 

  • Glennon RA, Rosecrans JA, Young R (1982) The use of the drug discrimination paradigm fpr studying hallucinogenic agents. A review. In: Colpaert FC, Slangen JL (eds) Drug discrimination: applications in CNS pharmacology. Elsevier, Amsterdam, pp 69–96

    Google Scholar 

  • Glennon RA, Seggel MR, Soine W, Davis KH, Lyon RA, Titeler M (1988) 125I-2,5-Dimethoxy-4-iodophenyl-2-aminopropane (DOI): an iodinated radioligand that specifically labels the agonist high affinity state of the 5HT2 serotonin receptor. J Med Chem 31:5–7

    Article  PubMed  CAS  Google Scholar 

  • Glennon RA, Raghupathi R, Bartyzel P, Teitler M, Leonhardt S (1992) Binding of phenylalkylamine derivatives at 5-HT1C and 5-HT2 serotonin receptors: evidence for a lack of selectivity. J Med Chem 35:734–740

    Article  PubMed  CAS  Google Scholar 

  • Glennon RA, Dukat M, El-Bermawy M, Law H, De Los AJ, Teitler M, King A, Herrick-Davis K (1994) Influence of amine substituents on 5-HT2A versus 5-HT2C binding of phenylalkyl- and indolylalkylamines. J Med Chem 37:1929–1935

    Article  PubMed  CAS  Google Scholar 

  • Grailhe R, Waeber C, Dulawa SC, Hornung JP, Zhuang X, Brunner D, Geyer MA, Hen R (1999) Increased exploratory activity and altered response to LSD in mice lacking the 5-HT(5A) receptor. Neuron 22:581–591

    Article  PubMed  CAS  Google Scholar 

  • Halberstadt AL, Geyer MA (2010) Hallucinogens. In: Koob G, Thompson RM, Le Moal M (eds) Encyclopedia of behavioral neuroscience, vol 2. Academic Press, London, pp 12–20

    Chapter  Google Scholar 

  • Halberstadt AL, Geyer MA (2011) Multiple receptors mediate the behavioral effects of indoleamine hallucinogens. Neuropharmacology 61:364–381

    Article  PubMed  CAS  Google Scholar 

  • Halberstadt AL, Buell MR, Masten VL, Risbrough VB, Geyer MA (2008) Modification of the effects of 5-methoxy-N,N-dimethyltryptamine on exploratory behavior in rats by monoamine oxidase inhibitors. Psychopharmacology 201:55–66

    Article  PubMed  CAS  Google Scholar 

  • Hameleers R, Blokland A, Steinbusch HW, Visser-Vandewalle V, Temel Y (2007) Hypomobility after DOI administration can be reversed by subthalamic nucleus deep brain stimulation. Behav Brain Res 185:65–67

    Article  PubMed  CAS  Google Scholar 

  • Holmstedt B, Lindgren JE, Plowman T, Rivier L, Schultes RE, Tovar O (1980) Indole alkaloids in Amazonian myrisicaceae: field and laboratory research. Har U Bot Mus Leaf 28:215–234

    Google Scholar 

  • Husbands SM, Glennon RA, Gorgerat S, Gough R, Tyacke R, Crosby J, Nutt DJ, Lewis JW, Hudson AL (2001) β-Carboline binding to imidazoline receptors. Drug Alcohol Depend 64:203–208

    Article  PubMed  CAS  Google Scholar 

  • Itzhak Y, Kassim CO (1990) Clorgyline displays high affinity for σ binding sites in C57BL/6 mouse brain. Eur J Pharmacol 176:107–108

    Article  PubMed  CAS  Google Scholar 

  • Kopin IJ, Pare CM, Axelrod J, Weissbach H (1961) The fate of melatonin in animals. J Biol Chem 236:3072–3075

    PubMed  CAS  Google Scholar 

  • Krebs-Thomson K, Paulus MP, Geyer MA (1998) Effects of hallucinogens on locomotor and investigatory activity and patterns: influence of 5-HT2A and 5-HT2C receptors. Neuropsychopharmacology 18:339–351

    Article  PubMed  CAS  Google Scholar 

  • Krebs-Thomson K, Ruiz EM, Masten V, Buell M, Geyer MA (2006) The roles of 5-HT1A and 5-HT2receptors in the effects of 5-MeO-DMT on locomotor activity and prepulse inhibition in rats. Psychopharmacology 189:319–329

    Article  PubMed  CAS  Google Scholar 

  • Levant B, Moehlenkamp JD, Morgan KA, Leonard NL, Cheng CC (1996) Modulation of [3H]quinpirole binding in brain by monoamine oxidase inhibitors: evidence for a potential novel binding site. J Pharmacol Exp Ther 278:145–153

    PubMed  CAS  Google Scholar 

  • Lione LA, Nutt DJ, Hudson AL (1996) [3H]2-(2-benzofuranyl)-2-imidazoline: a new selective high affinity radioligand for the study of rabbit brain imidazoline I2 receptors. Eur J Pharmacol 304:221–229

    Article  PubMed  CAS  Google Scholar 

  • Lyon RA, Davis KH, Titeler M (1987) 3H-DOB (4-bromo-2,5-dimethoxyphenylisopropylamine) labels a guanyl nucleotide-sensitive state of cortical 5-HT2 receptors. Mol Pharmacol 31:194–199

    PubMed  CAS  Google Scholar 

  • McKenna DJ, Towers GHN, Abbott F (1984) Monoamine oxidase inhibitors in South American hallucinogenic plants: tryptamine and β-carboline constituents of ayahuasca. J Ethnopharmacol 10:195–223

    Article  PubMed  CAS  Google Scholar 

  • Miralles A, Esteban S, Sastre-Coll A, Moranta D, Asensio VJ, Garcia-Sevilla JA (2005) High-affinity binding of β-carbolines to imidazoline I2B receptors and MAO-A in rat tissues: norharman blocks the effect of morphine withdrawal on DOPA/noradrenaline synthesis in the brain. Eur J Pharmacol 518:234–242

    Article  PubMed  CAS  Google Scholar 

  • Mittman SM, Geyer MA (1991) Dissociation of multiple effects of acute LSD on exploratory behavior in rats by ritanserin and propranolol. Psychopharmacology 105:69–76

    Article  PubMed  CAS  Google Scholar 

  • Nichols DE (2004) Hallucinogens. Pharmacol Ther 101:131–181

    Article  PubMed  CAS  Google Scholar 

  • Ortmann R, Schaub M, Felner A, Lauber J, Christen P, Waldmeier PC (1984) Phenylethylamine-induced stereotypies in the rat: a behavioral test system for assessment of MAO-B inhibitors. Psychopharmacology 84:22–27

    Article  PubMed  CAS  Google Scholar 

  • Ott J (2001) Pharmepéna-Psychonautics: human intranasal, sublingual and oral pharmacology of 5-methoxy-N,N-dimethyl-tryptamine. J Psychoactive Drugs 33:403–407

    Article  PubMed  CAS  Google Scholar 

  • Ouagazzal A, Grottick AJ, Moreau J, Higgins GA (2001) Effect of LSD on prepulse inhibition and spontaneous behavior in the rat. A pharmacological analysis and comparison between two rat strains. Neuropsychopharmacology 25:565–575

    Article  PubMed  CAS  Google Scholar 

  • Pálenícek T, Balíková M, Bubeníková-Valesová V, Horácek J (2008) Mescaline effects on rat behavior and its time profile in serum and brain tissue after a single subcutaneous dose. Psychopharmacology 196:51–62

    Article  PubMed  Google Scholar 

  • Paulus MP, Geyer MA (1991) A temporal and spatial scaling hypothesis for the behavioral effects of psychostimulants. Psychopharmacology 104:6–16

    Article  PubMed  CAS  Google Scholar 

  • Roth BL, Choudhary MS, Khan N, Uluer AZ (1997) High-affinity agonist binding is not sufficient for agonist efficacy at 5-hydroxytryptamine2A receptors: evidence in favor of a modified ternary complex model. J Pharmacol Exp Ther 280:576–583

    PubMed  CAS  Google Scholar 

  • Schultes RE, Hofmann A (1980) The botany and chemistry of hallucinogens. Charles C. Thomas, Springfield

    Google Scholar 

  • Schultes RE, Raffauf RF (1990) The healing forest. Medicinal and toxic plants of the Northwest Amazonia. Dioscorides Press, Portland

    Google Scholar 

  • Shaw GJ, Wright GJ, Milne GWA (1977) Mass spectra of some specifically deuterated tryptamines. Biomed Mass Spectrom 4:348–353

    Article  PubMed  CAS  Google Scholar 

  • Shen HW, Jiang XL, Winter JC, Yu AY (2010a) Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions. Curr Drug Metabol 11:659–666

    Article  CAS  Google Scholar 

  • Shen HW, Wu C, Jiang XL, Yu AM (2010b) Effects of monoamine oxidase inhibitor and cytochrome P450 2D6 status on 5-methoxy-N,N-dimethyltryptamine metabolism and pharmacokinetics. Biochem Pharmacol 80:122–128

    Article  PubMed  CAS  Google Scholar 

  • Shulgin AT, Shulgin A (1997) TIHKAL: the continuation. Transform Press, Berkeley

    Google Scholar 

  • Sitaram BR, Lockett L, Talomsin R, Blackman GL, McLeod WR (1987a) In vivo metabolism of 5-methoxy-N,N-dimethyltryptamine and N,N-dimethyltryptamine in the rat. Biochem Pharmacol 6:1509–1512

    Article  Google Scholar 

  • Sitaram BR, Talomsin R, Blackman GL, McLeod WR (1987b) Study of metabolism of psychotomimetic indolealkylamines by rat tissue extracts using liquid chromatography. Biochem Pharmacol 36:1503–1508

    Article  PubMed  CAS  Google Scholar 

  • Sklerov J, Levine B, Moore KA, King T, Fowler D (2005) A fatal intoxication following the ingestion of 5-methoxy-N,N-dimethyltryptamine in an Ayahuasca preparation. J Anal Toxicol 29:838–841

    PubMed  CAS  Google Scholar 

  • Squires RF (1975) Evidence that 5-methoxy-N, N-dimethyltryptamine is a specific substrate for MAO-A in the rat: implications for the indoleamine dependent behavioral syndrome. J Neurochem 24:47–50

    Article  PubMed  CAS  Google Scholar 

  • Szara S (1961) 6-Hydroxylation: an important metabolic route for α-methyltryptamine. Experientia 17:76–77

    Article  PubMed  CAS  Google Scholar 

  • Szara S, Axelrod J (1959) Hydroxylation and N-demethylation of N,N-dimethyltryptamine. Experientia 15:216–217

    Article  PubMed  CAS  Google Scholar 

  • Szara S, Hearst E, Putney F (1962) Metabolism and behavioural action of psychotropic tryptamine homologues. Int J Neuropharm 1:111–117

    Article  CAS  Google Scholar 

  • Titeler M, Lyon LA, Glennon RA (1988) Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropyl amine hallucinogens. Psychopharmacology 94:213–216

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider FX, Vollenweider-Scherpenhuyzen MFI, Bäbler A, Vogel H, Hell D (1998) Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 9:3897–3902

    Article  PubMed  CAS  Google Scholar 

  • White FJ, Wang RY (1983) Comparision of the effects of LSD and lisuride on A10 dopamine neurons in the rat. Neuropharmacology 22:669–676

    Article  PubMed  CAS  Google Scholar 

  • Wing LL, Tapson GS, Geyer MA (1990) 5HT-2 mediation of acute behavioral effects of hallucinogens in rats. Psychopharmacology 100:417–425

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Ueki S (1975) Behavioral effects of 2,5-dimethoxy-4-methylamphetamine (DOM) in rats and mice. Eur J Pharmacol 32:156–162

    Article  PubMed  CAS  Google Scholar 

  • Yu AM, Idle JR, Herraiz T, Kupfer A, Gonzalez FJ (2003) Screening for endogenous substrates reveals that CYP2D6 is a 5-methoxyindolethylamine O-demethylase. Pharmacogenetics 13:307–319

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by National Institute on Drug Abuse Awards R01 DA002925 and F32 DA025412, and the Veterans Affairs VISN 22 Mental Illness Research, Education, and Clinical Center. Receptor binding data were generously provided by the National Institute of Mental Health's Psychoactive Drug Screening Program, Contract # HHSN-271-2008-00025-C (NIMH PDSP). The NIMH PDSP is directed by Dr. Bryan Roth at the University of North Carolina at Chapel Hill and Project Officer Jamie Driscol at NIMH, Bethesda MD, USA. For experimental details, please refer to the PDSP web site: http://pdsp.med.unc.edu/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam L. Halberstadt.

Additional information

Supported by National Institute on Drug Abuse Awards R01 DA002925 and F32 DA025412 and the Veterans Affairs VISN 22 Mental Illness Research, Education, and Clinical Center.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halberstadt, A.L., Nichols, D.E. & Geyer, M.A. Behavioral effects of α,α,β,β-tetradeutero-5-MeO-DMT in rats: comparison with 5-MeO-DMT administered in combination with a monoamine oxidase inhibitor. Psychopharmacology 221, 709–718 (2012). https://doi.org/10.1007/s00213-011-2616-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2616-6

Keywords

Navigation