Skip to main content

Advertisement

Log in

Induction of morphine-6-glucuronide synthesis by heroin self-administration in the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

An Erratum to this article was published on 31 March 2012

Abstract

Rationale

Heroin is rapidly metabolized to morphine that in turn is transformed into morphine-3-glucuronide (M3G), an inactive metabolite at mu-opioid receptor (MOR), and morphine-6-glucuronide (M6G), a potent MOR agonist. We have found that rats that had received repeated intraperitoneal injections of heroin exhibit measurable levels of M6G (which is usually undetectable in this species).

Objective

The goal of the present study was to investigate whether M6G synthesis can be induced by intravenous (i.v.) heroin self-administration (SA).

Materials and methods

Rats were trained to self-administer either heroin (50 μg/kg per infusion) or saline for 20 consecutive 6-h sessions and then challenged with an intraperitoneal challenge of 10 mg/kg of heroin. Plasma levels of heroin, morphine, 6-mono-acetyl morphine, M3G, and M6G were quantified 2 h after the challenge. In vitro morphine glucuronidation was studied in microsomal preparations obtained from the liver of the same rats.

Results

Heroin SA induced the synthesis of M6G, as indicated by detectable plasma levels of M6G (89.7 ± 37.0 ng/ml vs. 7.35 ± 7.35 ng/ml after saline SA). Most important, the in vitro V max for M6G synthesis was correlated with plasma levels of M6G (r 2 = 0.78). Microsomal preparations from saline SA rats produced negligible amounts of M6G.

Conclusion

Both in vivo and in vitro data indicate that i.v. heroin SA induces the synthesis of M6G. These data are discussed in the light of previous studies conducted in heroin addicts indicating that in humans heroin enhances the synthesis of the active metabolite of heroin and morphine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen G, Sjogren P, Hansen SH, Jensen NH, Christrup L (2004) Pharmacological consequences of long-term morphine treatment in patients with cancer and chronic non-malignant pain. Eur J Pain 8:263–271

    Article  PubMed  CAS  Google Scholar 

  • Antonilli L, Semeraro F, Suriano C, Signore L, Nencini P (2003a) High levels of morphine-6-glucuronide in street heroin addicts. Psychopharmacology (Berl) 170:200–204

    Article  CAS  Google Scholar 

  • Antonilli L, Suriano C, Paolone G, Badiani A, Nencini P (2003b) Repeated exposures to heroin and/or cadmium alter the rate of formation of morphine glucuronides in the rat. J Pharmacol Exp Ther 307:651–660

    Article  PubMed  CAS  Google Scholar 

  • Antonilli L, Petecchia E, Caprioli D, Badiani A, Nencini P (2005) Effect of repeated administrations of heroin, naltrexone, methadone and alcohol on morphine glucuronidation in the rat. Psychopharmacology 182:52–64

    Article  Google Scholar 

  • Binning AR, Przesmycki K, Sowinski P, Morrison LM, Smith TW, Marcus P, Lees JP, Dahan A (2011) A randomised controlled trial on the efficacy and side-effect profile (nausea/vomiting/sedation) of morphine-6-glucuronide versus morphine for post-operative pain relief after major abdominal surgery. Eur J Pain 15:402–408

    Article  PubMed  CAS  Google Scholar 

  • Brown GP, Yang K, Ouerfelli O, Standifer KM, Byrd D, Pasternak GW (1997) 3H-Morphine-6beta-glucuronide binding in brain membranes and an MOR-1-transfected cell line. J Pharmacol Exp Ther 282:1291–1297

    PubMed  CAS  Google Scholar 

  • Christrup LL (1997) Morphine metabolites. Acta Anaesthesiol Scand 41:116–122

    Article  PubMed  CAS  Google Scholar 

  • Faura CC, Collins SL, Moore RA, McQuay HJ (1998) Systematic review of factors affecting the ratios of morphine and its major metabolites. Pain 74:43–53

    Article  PubMed  CAS  Google Scholar 

  • Frances B, Gout R, Monsarrat B, Cros J, Zajac JM (1992) Further evidence that morphine-6 beta-glucuronide is a more potent opioid agonist than morphine. J Pharmacol Exp Ther 262:25–31

    PubMed  CAS  Google Scholar 

  • Fraser HF, Van Horn GD, Martin WR, Wolbach AB, Isbell H (1961) Methods for evaluating addiction liability. (A) “Attitude” of opiate addicts toward opiate-like drugs. (B) A short-term “direct” addiction test. J Pharmacol Exp Ther 133:371–387

    PubMed  CAS  Google Scholar 

  • Gong QL, Hedner T, Hedner J, Bjorkman R, Nordberg G (1991) Antinociceptive and ventilatory effects of the morphine metabolites: morphine-6- glucuronide and morphine-3-glucuronide. Eur J Pharmacol 193:47–56

    Article  PubMed  CAS  Google Scholar 

  • Graziani M, Antonilli L, Togna AR, Brusadin V, Viola S, Togna G, Badiani A, Nencini P (2008) Non-opioid induction of morphine-6-glucuronide us is elicited by prolonged exposure of rat hepatocytes to heroin. Drug Alcohol Depend 98:179–184

    Article  PubMed  CAS  Google Scholar 

  • Gutstein HB, Akil H (2006) Opioid analgesics. In: Brunton LL, Lazo JS, Parker KL (eds) Goodman and Gilman's the pharmacological basis of therapeutics, 11th edn. McGraw-Hill, New York, pp 547–590

    Google Scholar 

  • Loh HH, Liu HC, Cavalli A, Yang W, Chen YF, Wei LN (1998) μ Opioid receptor knockout in mice: effects on ligand-induced analgesia and morphine lethality. Mol Brain Res 54:321–326

    Article  PubMed  CAS  Google Scholar 

  • Lotsch J (2005) Pharmacokinetic–pharmacodynamic modeling of opioids. J Pain Symptom Manage 29(5 Suppl):S90–S103

    Article  PubMed  Google Scholar 

  • Lotsch J, Zimmermann M, Darimont J, Marx C, Dudziak R, Skarke C, Geisslinger G (2002) Does the A118G polymorphism at the mu-opioid receptor gene protect against morphine-6-glucuronide toxicity? Anesthesiology 97:814–819

    Article  PubMed  Google Scholar 

  • Mantione K, Zhu W, Rialas C, Casares F, Cadet P, Franklin AL, Tonnesen J, Stefano GB (2002) Morphine-6-glucuronide stimulates nitric oxide release in mussel neural tissues: evidence for a morphine-6-glucuronide opiate receptor subtype. Cell Mol Life Sci 59:570–574

    Article  PubMed  CAS  Google Scholar 

  • Markou A, Weiss F, Gold LH, Caine SB, Schulteis G, Koob GF (1993) Animal models of drug craving. Psychopharmacology (Berl) 112:163–182

    Article  CAS  Google Scholar 

  • Martin WR, Fraser HF (1961) A comparative study of physiological and subjective effects of heroin and morphine administered intravenously in postaddicts. J Pharmacol Exp Ther 133:388–399

    PubMed  CAS  Google Scholar 

  • Matthes HWD, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, Befort K, Dierich A, Le Meur M, Dollé P, Tzavara E, Hanoune J, Roques BP, Kieffer BL (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the μ-opioid-receptor gene. Nature 383:819–823

    Article  PubMed  CAS  Google Scholar 

  • Meineke I, Freudenthaler S, Hofmann U, Schaeffeler E, Mikus G, Schwab M, Prange HW, Gleiter CH, Brockmoller J (2002) Pharmacokinetic modelling of morphine, morphine-3-glucuronide and morphine-6-glucuronide in plasma and cerebrospinal fluid of neurosurgical patients after short-term infusion of morphine. Br J Clin Pharmacol 54:592–603

    Article  PubMed  CAS  Google Scholar 

  • Milne RW, Nation RL, Somogyi AA (1996) The disposition of morphine and its 3 and 6-glucuronide metabolites in humans and animals, and the importance of the metabolites to the pharmacological effects of morphine. Drug Metab Rev 28:345–472

    Article  PubMed  CAS  Google Scholar 

  • Osborne PB, Chieng B, Christie MJ (2000) Morphine-6 beta-glucuronide has a higher efficacy than morphine as a mu-opioid receptor agonist in the rat locus coeruleus. Br J Pharmacol 131:1422–1428

    Article  PubMed  CAS  Google Scholar 

  • Pan YX, Xu J, Xu M, Rossi GC, Matulonis JE, Pasternak GW (2009) Involvement of exon 11-associated variants of the mu opioid receptor MOR-1 in heroin, but not morphine, actions. Proc Natl Acad Sci U S A 106:4917–4922

    Article  PubMed  CAS  Google Scholar 

  • Paul D, Standifer KM, Inturrisi CE, Pasternak GW (1989) Pharmacological characterization of morphine-6 beta-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther 251:477–483

    PubMed  CAS  Google Scholar 

  • Pauli-Magnus C, Hofmann U, Mikus G, Kuhlmann U, Mettang T (1999) Pharmacokinetics of morphine and its glucuronides following intravenous administration of morphine in patients undergoing continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 14:903–909

    Article  PubMed  CAS  Google Scholar 

  • Penson RT, Joel SP, Bakhshi K, Clark SJ, Langford RM, Slevin ML (2000) Randomized placebo-controlled trial of the activity of the morphine glucuronides. Clin Pharmacol Ther 68:667–676

    Article  PubMed  CAS  Google Scholar 

  • Peterson GM, Randall CT, Paterson J (1990) Plasma levels of morphine and morphine glucuronides in the treatment of cancer pain: relationship to renal function and route of administration. Eur J Clin Pharmacol 38:121–124

    Article  PubMed  CAS  Google Scholar 

  • Romberg R, Olofsen E, Sarton E, den Hartigh J, Taschner PE, Dahan A (2004) Pharmacokinetic–pharmacodynamic modeling of morphine-6-glucuronide-induced analgesia in healthy volunteers: absence of sex differences. Anesthesiology 100:120–133

    Article  PubMed  CAS  Google Scholar 

  • Rossi GC, Pan Y-X, Brown GP, Pasternak GW (1995a) Antisense mapping the MOR-1 opioid receptor: evidence for alternative splicing and a novel morphine-6β-glucuronide receptor. FEBS Lett 369:192–196

    Article  PubMed  CAS  Google Scholar 

  • Rossi GC, Standifer KM, Pasternak GW (1995b) Differential blockade of morphine and morphine-6 beta-glucuronide analgesia by antisense oligodeoxynucleotides directed against MOR-1 and G-protein alpha subunits in rats. Neurosci Lett 198:99–102

    Article  PubMed  CAS  Google Scholar 

  • Sawaya BE, Deshmane SL, Mukerjee R, Fan S, Khalili K (2009) TNF alpha production in morphine-treated human neural cells is NF-kappaB-dependent. J Neuroimmune Pharmacol 4:140–149

    Article  PubMed  Google Scholar 

  • Schuller AGP, King MA, Zhang J, Bolan E, Pan YX, Morgan DJ, Chang A, Czick ME (1999) Retention of heroin and morphine-6 beta-glucuronide analgesia in a new line of mice lacking exon 1 of MOR-1. Nat Neurosci 2:151–156

    Article  PubMed  CAS  Google Scholar 

  • Skarke C, Darimont J, Schmidt H, Geisslinger G, Lotsch J (2003) Analgesic effects of morphine and morphine-6-glucuronide in a transcutaneous electrical pain model in healthy volunteers. Clin Pharmacol Ther 73:107–121

    Article  PubMed  CAS  Google Scholar 

  • Sora I, Takahashi N, Funada M, Ujike H, Revay RS, Donovan DM, Miner LL, Uhl GR (1997) Opiate receptor knockout mice define receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc Natl Acad Sci USA 94:1544–1549

    Article  PubMed  CAS  Google Scholar 

  • Stain-Texier F, Boschi G, Sandouk P, Schermann JM (1999) Elevated concentrations of morphine 6-beta-d-glucuronide in brain extracellular fluid despite low blood-brain barrier permeability. Br J Pharmacol 128:917–924

    Article  PubMed  CAS  Google Scholar 

  • Tunblad K, Hammarlund-Udenaes M, Jonsson EN (2005) Influence of probenecid on the delivery of morphine-6-glucuronide to the brain. Eur J Pharm Sci 24:49–57

    Article  PubMed  CAS  Google Scholar 

  • Ulens C, Baker L, Ratka A, Waumans D, Tytgat J (2001) Morphine-6beta-glucuronide and morphine-3-glucuronide, opioid receptor agonists with different potencies. Biochem Pharmacol 62:1273–1282

    Article  PubMed  CAS  Google Scholar 

  • Unterwald EM, Pasternak GW, Pintar JE (1999) Retention of heroin and morphine-6β-glucuronide analgesia in a new line of mice lacking exon 1 of MOR-1. Nat Neurosci 2:151–156

    Article  PubMed  Google Scholar 

  • Ventura C, Zinellu E, Maninchedda E, Maioli M (2003) Dynorphin B is an agonist of nuclear opioid receptors coupling nuclear protein kinase C activation to the transcription of cardiogenic genes in GTR1 embryonic stem cells. Circ Res 92:623–629

    Article  PubMed  CAS  Google Scholar 

  • Vermeire A, Remon JP, Rosseel MT, Belpaire F, Devulder J, Bogaert MG (1998) Variability of morphine disposition during long-term subcutaneous infusion in terminally ill cancer patients. Eur J Clin Pharmacol 53:325–330

    Article  PubMed  CAS  Google Scholar 

  • Walker JR, King M, Izzo E, Koob GF, Pasternak GW (1999) Antagonism of heroin and morphine self-administration in rats by the morphine-6β-glucuronide antagonist 3-Omethylnaltrexone. Eur J Pharmacol 383:115–119

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Mitchell J, Moriyama K, Kim KJ, Sharma M, Xie GX, Palmer PP (2005) Age-dependent morphine tolerance development in the rat. Anesth Analg 100:1733–1739

    Article  PubMed  CAS  Google Scholar 

  • Wielbo D, Bhat R, Chari G, Vidyasagar D, Tebbett IR, Gulati A (1993) High performance liquid chromatographic determination of morphine and its metabolites in plasma using diode-array detection. J Chromatogr 615:164–168

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Badiani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meringolo, M., Brusadin, V., De Luca, M.T. et al. Induction of morphine-6-glucuronide synthesis by heroin self-administration in the rat. Psychopharmacology 221, 195–203 (2012). https://doi.org/10.1007/s00213-011-2534-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2534-7

Keywords

Navigation