Skip to main content

Advertisement

Log in

Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ9-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive–compulsive behaviour

Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Phytocannabinoids are useful therapeutics for multiple applications including treatments of constipation, malaria, rheumatism, alleviation of intraocular pressure, emesis, anxiety and some neurological and neurodegenerative disorders. Consistent with these medicinal properties, extracted cannabinoids have recently gained much interest in research, and some are currently in advanced stages of clinical testing. Other constituents of Cannabis sativa, the hemp plant, however, remain relatively unexplored in vivo. These include cannabidiol (CBD), cannabidivarine (CBDV), Δ9-tetrahydrocannabivarin (Δ9-THCV) and cannabigerol (CBG).

Objectives and methods

We here determined pharmacokinetic profiles of the above phytocannabinoids after acute single-dose intraperitoneal and oral administration in mice and rats. The pharmacodynamic–pharmacokinetic relationship of CBD (120 mg/kg, ip and oral) was further assessed using a marble burying test in mice.

Results

All phytocannabinoids readily penetrated the blood–brain barrier and solutol, despite producing moderate behavioural anomalies, led to higher brain penetration than cremophor after oral, but not intraperitoneal exposure. In mice, cremophor-based intraperitoneal administration always attained higher plasma and brain concentrations, independent of substance given. In rats, oral administration offered higher brain concentrations for CBD (120 mg/kg) and CBDV (60 mg/kg), but not for Δ9-THCV (30 mg/kg) and CBG (120 mg/kg), for which the intraperitoneal route was more effective. CBD inhibited obsessive–compulsive behaviour in a time-dependent manner matching its pharmacokinetic profile.

Conclusions

These data provide important information on the brain and plasma exposure of new phytocannabinoids and guidance for the most efficacious administration route and time points for determination of drug effects under in vivo conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Abel EL, McMillan DE, Harris LS (1974) D9-Tetrahydro-cannabinol: effects of routes of administration on onset and duration of activity and tolerance development. Psychopharmacologia 35:29

    Article  CAS  Google Scholar 

  • Aghazadeh-Habashi A, Ibrahim A, Carran J, Anastassiades T, Jamali F (2006) Single dose pharmacokinetics and bioavailability of butyryl glucosamine in the rat. J Pharm Pharm Sci 9:359–364

    PubMed  CAS  Google Scholar 

  • Agurell S, Halldin M, Lindgren JE, Ohlsson A, Widman M, Gillespie H, Hollister L (1986) Pharmacokinetics and metabolism of delta 1-tetrahydrocannabinol and other cannabinoids with emphasis on man. Pharmacol Rev 38:21–43

    PubMed  CAS  Google Scholar 

  • Alozie SO, Martin BR, Harris LS, Dewey WL (1980) 3H-delta 9-Tetrahydrocannabinol, 3H-cannabinol and 3H-cannabidiol: penetration and regional distribution in rat brain. Pharmacol Biochem Behav 12:217–221

    Article  PubMed  CAS  Google Scholar 

  • Appendino G, Gibbons S, Giana A, Pagani A, Grassi G, Stavri M, Smith E, Rahman MM (2008) Antibacterial cannabinoids from Cannabis sativa: a structure–activity study. J Nat Prod 71:1427–1430. doi:10.1021/np8002673

    Article  PubMed  CAS  Google Scholar 

  • Baek SH, Kim YO, Kwag JS, Choi KE, Jung WY, Han DS (1998) Boron trifluoride etherate on silica-A modified Lewis acid reagent (VII). Antitumor activity of cannabigerol against human oral epitheloid carcinoma cells. Arch Pharm Res 21:353–356

    Article  PubMed  CAS  Google Scholar 

  • Bambico FR, Duranti A, Tontini A, Tarzia G, Gobbi G (2009) Endocannabinoids in the treatment of mood disorders: evidence from animal models. Curr Pharm Des 15:1623–1646

    Article  PubMed  CAS  Google Scholar 

  • Barna I, Till I, Haller J (2009) Blood, adipose tissue and brain levels of the cannabinoid ligands WIN-55,212 and SR-141716A after their intraperitoneal injection in mice: compound-specific and area-specific distribution within the brain. Eur Neuropsychopharmacol 19:533–541. doi:10.1016/j.euroneuro.2009.02.001

    Article  PubMed  CAS  Google Scholar 

  • Bifulco M, Grimaldi C, Gazzerro P, Pisanti S, Santoro A (2007) Rimonabant: just an antiobesity drug? Current evidence on its pleiotropic effects. Mol Pharmacol 71:1445–1456. doi:10.1124/mol.106.033118

    Article  PubMed  CAS  Google Scholar 

  • Bisogno T, Hanus L, De Petrocellis L, Tchilibon S, Ponde DE, Brandi I, Moriello AS, Davis JB, Mechoulam R, Di Marzo V (2001) Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol 134:845–852. doi:10.1038/sj.bjp.0704327

    Article  PubMed  CAS  Google Scholar 

  • Bittner B, Gonzalez RC, Walter I, Kapps M, Huwyler J (2003) Impact of Solutol HS 15 on the pharmacokinetic behaviour of colchicine upon intravenous administration to male Wistar rats. Biopharm Drug Dispos 24:173–181. doi:10.1002/bdd.353

    Article  PubMed  CAS  Google Scholar 

  • Bolognini D, Costa B, Maione S, Comelli F, Marini P, Di Marzo V, Parolaro D, Ross RA, Gauson LA, Cascio MG, Pertwee RG (2010) The plant cannabinoid delta9-tetrahydrocannabivarin can decrease signs of inflammation and inflammatory pain in mice. Br J Pharmacol 160:677–687. doi:10.1111/j.1476-5381.2010.00756.x

    Article  PubMed  CAS  Google Scholar 

  • Borsini F, Podhorna J, Marazziti D (2002) Do animal models of anxiety predict anxiolytic-like effects of antidepressants? Psychopharmacology (Berl) 163:121–141. doi:10.1007/s0 0213-002-1155-6

    Article  CAS  Google Scholar 

  • Broekkamp CL, Rijk HW, Joly-Gelouin D, Lloyd KL (1986) Major tranquillizers can be distinguished from minor tranquillizers on the basis of effects on marble burying and swim-induced grooming in mice. Eur J Pharmacol 126:223–229

    Article  PubMed  CAS  Google Scholar 

  • Carey M, Burish TG, Brenner DE (1983) delta-9-Tetrahydrocannabinol in cancer chemotherapy: research problems and issues. Ann Intern Med 99:106

    PubMed  CAS  Google Scholar 

  • Carlini EA (2004) The good and the bad effects of (−) trans-delta-9-tetrahydrocannabinol (delta 9-THC) on humans. Toxicon 44:461–467. doi:10.1016/j.toxicon.2004.05.009

    Article  PubMed  CAS  Google Scholar 

  • Casarotto PC, Gomes FV, Resstel LB, Guimaraes FS (2010) Cannabidiol inhibitory effect on marble-burying behaviour: involvement of CB1 receptors. Behav Pharmacol 21:353–358

    Article  PubMed  CAS  Google Scholar 

  • Cascio MG, Gauson LA, Stevenson LA, Ross RA, Pertwee RG (2010) Evidence that the plant cannabinoid cannabigerol is a highly potent alpha2-adrenoceptor agonist and moderately potent 5HT1A receptor antagonist. Br J Pharmacol 159:129–141. doi:10.1111/j.1476-5381.2009.00515.x

    Article  PubMed  CAS  Google Scholar 

  • Claassen V (1994) Neglected factors in pharmacology and neuroscience research. Elsevier, Amsterdam

    Google Scholar 

  • Colasanti BK (1990) A comparison of the ocular and central effects of delta 9-tetrahydrocannabinol and cannabigerol. J Ocul Pharmacol 6:259–269

    Article  PubMed  CAS  Google Scholar 

  • Colasanti BK, Craig CR, Allara RD (1984) Intraocular pressure, ocular toxicity and neurotoxicity after administration of cannabinol or cannabigerol. Exp Eye Res 39:251–259

    Article  PubMed  CAS  Google Scholar 

  • Cornaire G, Woodley J, Hermann P, Cloarec A, Arellano C, Houin G (2004) Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. Int J Pharm 278:119–131. doi:10.1016/j.ijpharm.2004.03.001

    Article  PubMed  CAS  Google Scholar 

  • De Leo L, Di Toro N, Decorti G, Malusa N, Ventura A, Not T (2010) Fasting increases tobramycin oral absorption in mice. Antimicrob Agents Chemother 54:1644–1646. doi:10.1128/AAC.01172-09

    Article  PubMed  Google Scholar 

  • de Mattos Viana B, Prais HA, Daker MV (2009) Melancholic features related to rimonabant. Gen Hosp Psychiatry 31:583–585. doi:10.1016/j.genhosppsych.2008.12.009

    Article  PubMed  Google Scholar 

  • Despres JP (2009) Pleiotropic effects of rimonabant: clinical implications. Curr Pharm Des 15:553–570

    Article  PubMed  CAS  Google Scholar 

  • Elsohly MA, Slade D (2005) Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 78:539–548. doi:10.1016/j.lfs.2005.09.011

    Article  PubMed  CAS  Google Scholar 

  • Fang JY, Hsu SH, Leu YL, Hu JW (2009) Delivery of cisplatin from pluronic co-polymer systems: liposome inclusion and alginate coupling. J Biomater Sci Polym Ed 20:1031–1047. doi:10.1163/156856209X444493

    Article  PubMed  CAS  Google Scholar 

  • Gaoni Y, Mechoulam R (1964) Isolation, structure and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646–1647

    Google Scholar 

  • Gill EW, Paton WD, Pertwee RG (1970) Preliminary experiments on the chemistry and pharmacology of cannabis. Nature 228:134–136

    Article  PubMed  CAS  Google Scholar 

  • Gomes FV, Casarotto PC, Resstel LB, Guimaraes FS (2011) Facilitation of CB1 receptor-mediated neurotransmission decreases marble burying behavior in mice. Prog Neuropsychopharmacol Biol Psychiatry 35:434–438. doi:10.1016/j.pnpbp.2010.11.027

    Article  PubMed  CAS  Google Scholar 

  • Goulle JP, Saussereau E, Lacroix C (2008) delta-9-Tetrahydrocannabinol pharmacokinetics. Ann Pharm Fr 66:232–244. doi:10.1016/j.pharma.2008.07.006

    Article  PubMed  CAS  Google Scholar 

  • Guzman M, Sanchez C, Galve-Roperh I (2002) Cannabinoids and cell fate. Pharmacol Ther 95:175–184

    Article  PubMed  CAS  Google Scholar 

  • Hill AJ, Weston SE, Jones NA, Smith I, Bevan SA, Williamson EM, Stephens GJ, Williams CM, Whalley BJ (2010) delta-Tetrahydrocannabivarin suppresses in vitro epileptiform and in vivo seizure activity in adult rats. Epilepsia 51:1522–1532. doi:10.1111/j.1528-1167.2010.02523.x

    Article  PubMed  CAS  Google Scholar 

  • Hillig KW, Mahlberg PG (2004) A chemotaxonomic analysis of cannabinoids variation in Cannabis (Cannabaceae). Am J Bot 91:966

    Article  PubMed  CAS  Google Scholar 

  • Ho BT, Fritchie GE, Englert LF, McIsaac WM, Idanpaan-Heikkila JE (1971) Marihuana: importance of the route of administration. J Pharm Pharmacol 23:309–310

    Article  PubMed  CAS  Google Scholar 

  • Hollister LE (1974) Structure-activity relationships in man of cannabis constituents, and homologs and metabolites of delta9-tetrahydrocannabinol. Pharmacology 11:3–11

    Article  PubMed  CAS  Google Scholar 

  • Iuvone T, Esposito G, De Filippis D, Scuderi C, Steardo L (2009) Cannabidiol: a promising drug for neurodegenerative disorders? CNS Neurosci Ther 15:65–75. doi:10.1111/j.1755-5949.2008.00065.x

    Article  PubMed  CAS  Google Scholar 

  • Iversen L (2007) The science of marijuana. Oxford University Press, Oxford

    Book  Google Scholar 

  • Jones AB, Elsohly MA, Bedford JA, Turner CE (1981) Determination of cannabidiol in plasma by electron-capture gas chromatography. J Chromatogr 226:99–105

    Article  PubMed  CAS  Google Scholar 

  • Kast A, Nishikawa J (1981) The effect of fasting on oral acute toxicity of drugs in rats and mice. Lab Anim 15:359–364

    Article  PubMed  CAS  Google Scholar 

  • Leweke FM, Koethe D, Pahlisch F, Schreiber D, Gerth CW, Nolden BM, Klosterkötter J, Hellmich M, Piomelli D (2009) Antipsychotic effects of cannabidiol. 17th EPA Congress. Eur Psychiatry 24:S207

    Article  Google Scholar 

  • Li X, Morrow D, Witkin JM (2006) Decreases in nestlet shredding of mice by serotonin uptake inhibitors: comparison with marble burying. Life Sci 78:1933–1939. doi:10.1016/j.lfs.2005.08.002

    Article  PubMed  CAS  Google Scholar 

  • Ligresti A, Moriello AS, Starowicz K, Matias I, Pisanti S, De Petrocellis L, Laezza C, Portella G, Bifulco M, Di Marzo V (2006) Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. J Pharmacol Exp Ther 318:1375–1387. doi:10.1124/jpet.106.105247

    Article  PubMed  CAS  Google Scholar 

  • Mantilla-Plata B, Harbison RD (1975) Distribution studies of (14C)delta-9-tetrahydrocannabinol in mice: effect of vehicle, route of administration, and duration of treatment. Toxicol Appl Pharmacol 34:292–300

    Article  PubMed  CAS  Google Scholar 

  • Nicolas LB, Kolb Y, Prinssen EP (2006) A combined marble burying-locomotor activity test in mice: a practical screening test with sensitivity to different classes of anxiolytics and antidepressants. Eur J Pharmacol 547:106–115. doi:10.1016/j.ejphar.2006.07.015

    Article  PubMed  CAS  Google Scholar 

  • Njung'e K, Handley SL (1991) Evaluation of marble-burying behavior as a model of anxiety. Pharmacol Biochem Behav 38:63–67

    Article  PubMed  Google Scholar 

  • Perrier T, Saulnier P, Fouchet F, Lautram N, Benoit JP (2010) Post-insertion into lipid nanocapsules (LNCs): from experimental aspects to mechanisms. Int J Pharm 396:204–209. doi:10.1016/j.ijpharm.2010.06.019

    Article  PubMed  CAS  Google Scholar 

  • Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631. doi:10.1124/pr.110.003004

    Article  PubMed  CAS  Google Scholar 

  • Pertwee RG (2008) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol 153:199–215. doi:10.1038/sj.bjp.0707442

    Article  PubMed  CAS  Google Scholar 

  • Pertwee RG (2007) GPR55: a new member of the cannabinoid receptor clan? Br J Pharmacol 152:984–986. doi:10.1038/sj.bjp.0707464

    Article  PubMed  CAS  Google Scholar 

  • Pertwee RG (2004) The pharmacology and therapeutic potential of cannabidiol. In: Di Marzo V (ed) Cannabinoids. Kluwer Academic/Plenum, New York, p 32

    Google Scholar 

  • Pertwee RG (1997) Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 74:129–180

    Article  PubMed  CAS  Google Scholar 

  • Plotkin SR, Banks WA, Maness LM, Kastin AJ (2000) Differential transport of rat and human interleukin-1alpha across the blood–brain barrier and blood-testis barrier in rats. Brain Res 881:57–61

    Article  PubMed  CAS  Google Scholar 

  • Riedel G, Fadda P, McKillop-Smith S, Pertwee RG, Platt B, Robinson L (2009) Synthetic and plant-derived cannabinoid receptor antagonists show hypophagic properties in fasted and non-fasted mice. Br J Pharmacol 156:1154–1166

    Article  PubMed  CAS  Google Scholar 

  • Rog DJ (2010) Cannabis-based medicines in multiple sclerosis—a review of clinical studies. Immunobiology 215:658–672. doi:10.1016/j.imbio.2010.03.009

    Article  PubMed  CAS  Google Scholar 

  • Russo EB, Burnett A, Hall B, Parker KK (2005) Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem Res 30:1037–1043. doi:10.1007/s11064-005-6978-1

    Article  PubMed  CAS  Google Scholar 

  • Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092–1101. doi:10.1038/sj.bjp.0707460

    Article  PubMed  CAS  Google Scholar 

  • Samara E, Bialer M, Mechoulam R (1988) Pharmacokinetics of cannabidiol in dogs. Drug Metab Dispos 16:469–472

    PubMed  CAS  Google Scholar 

  • Scutt A, Williamson EM (2007) Cannabinoids stimulate fibroblastic colony formation by bone marrow cells indirectly via CB2 receptors. Calcif Tissue Int 80:50–59. doi:10.1007/s00223-006-0171-7

    Article  PubMed  CAS  Google Scholar 

  • Sethi BB, Trivedi JK, Kumar P, Gulati A, Agarwal AK, Sethi N (1986) Antianxiety effect of cannabis: involvement of central benzodiazepine receptors. Biol Psychiatry 21:3–10

    Article  PubMed  CAS  Google Scholar 

  • Siemens AJ, Walczak D, Buckley FE (1980) Characterization of blood disappearance and tissue distribution of [3H]cannabidiol. Biochem Pharmacol 29:462–464

    Article  PubMed  CAS  Google Scholar 

  • Smith DA, Di L, Kerns EH (2010) The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov 9:929–939. doi:10.1038/nrd3287

    Article  PubMed  CAS  Google Scholar 

  • Soderpalm AH, Schuster A, de Wit H (2001) Antiemetic efficacy of smoked marijuana: subjective and behavioral effects on nausea induced by syrup of ipecac. Pharmacol Biochem Behav 69:343–350

    Article  PubMed  CAS  Google Scholar 

  • Syvanen S, Lindhe O, Palner M, Kornum BR, Rahman O, Langstrom B, Knudsen GM, Hammarlund-Udenaes M (2009) Species differences in blood–brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos 37:635–643. doi:10.1124/dmd.108.024745

    Article  PubMed  Google Scholar 

  • Takeuchi H, Yatsugi S, Yamaguchi T (2002) Effect of YM992, a novel antidepressant with selective serotonin re-uptake inhibitory and 5-HT 2A receptor antagonistic activity, on a marble-burying behavior test as an obsessive-compulsive disorder model. Jpn J Pharmacol 90:197–200

    Article  PubMed  CAS  Google Scholar 

  • Thomas A, Burant A, Bui N, Graham D, Yuva-Paylor LA, Paylor R (2009) Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety. Psychopharmacology (Berl) 204:361–373. doi:10.1007/s00213-009-1466-y

    Article  CAS  Google Scholar 

  • Thomas A, Baillie GL, Phillips AM, Razdan RK, Ross RA, Pertwee RG (2007) Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br J Pharmacol 150:613–623. doi:10.1038/sj.bjp.0707133

    Article  PubMed  CAS  Google Scholar 

  • Thomas A, Stevenson LA, Wease KN, Price MR, Baillie G, Ross RA, Pertwee RG (2005) Evidence that the plant cannabinoid delta9-tetrahydrocannabivarin is a cannabinoid CB1 and CB2 receptor antagonist. Br J Pharmacol 146:917–926. doi:10.1038/sj.bjp.0706414

    Article  PubMed  CAS  Google Scholar 

  • Tubaro A, Giangaspero A, Sosa S, Negri R, Grassi G, Casano S, Della Loggia R, Appendino G (2010) Comparative topical anti-inflammatory activity of cannabinoids and cannabivarins. Fitoterapia 81:816–819. doi:10.1016/j.fitote.2010.04.009

    Article  PubMed  CAS  Google Scholar 

  • Turcotte D, Le Dorze JA, Esfahani F, Frost E, Gomori A, Namaka M (2010) Examining the roles of cannabinoids in pain and other therapeutic indications: a review. Expert Opin Pharmacother 11:17–31. doi:10.1517/14656560903413534

    Article  PubMed  CAS  Google Scholar 

  • Valiveti S, Hammell DC, Earles DC, Stinchcomb AL (2004) Transdermal delivery of the synthetic cannabinoid WIN 55,212-2: in vitro/in vivo correlation. Pharm Res 21:1137–1145

    Article  PubMed  CAS  Google Scholar 

  • Voth EA, Schwartz RH (1997) Medicinal applications of delta-9-tetrahydrocannabinol and marijuana. Ann Intern Med 126:791–798

    PubMed  CAS  Google Scholar 

  • Whyte LS, Ryberg E, Sims NA, Ridge SA, Mackie K, Greasley PJ, Ross RA, Rogers MJ (2009) The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc Natl Acad Sci USA 106:16511–16516. doi:10.1073/pnas.0902743106

    Article  PubMed  CAS  Google Scholar 

  • Woodburn K, Sykes E, Kessel D (1995) Interactions of Solutol HS 15 and cremophor EL with plasma lipoproteins. Int J Biochem Cell Biol 27:693–699

    Article  PubMed  CAS  Google Scholar 

  • Zuardi AW (2008) Cannabidiol: from an inactive cannabinoid to a drug with wide spectrum of action. Rev Bras Psiquiatr 30:271–280

    Article  PubMed  Google Scholar 

  • Zuardi AW, Crippa JA, Hallak JE, Moreira FA, Guimaraes FS (2006) Cannabidiol, a Cannabis sativa constituent, as an antipsychotic drug. Braz J Med Biol Res 39:421–429

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by a collaboration between GW Pharmaceuticals and Otsuka Pharma. Furthermore, and we are indebted to Drs. T Kikuchi for comments on an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Riedel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

HPLC spectra of compounds used in this study. Purity was above 95%. a CBD; b CBDV; c Δ9-THCV; d CBG (JPEG 47 kb)

Supplementary Fig. 2

Pharmacokinetic comparison of CBD dissolved in solutol or chremophor and injected into rat. Administration routes included intraperitoneal (a, b) and oral (c, d) routes. CBD (120 mg/kg) was administered at time point 0 and tissue harvested at six time points within 24 h post-dosing. Drug levels are shown in top row (a and c) as log 10 of plasma concentration (C P) and in b and d as log 10 of brain concentration (C B). Mean ± SEM. (JPEG 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deiana, S., Watanabe, A., Yamasaki, Y. et al. Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ9-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive–compulsive behaviour. Psychopharmacology 219, 859–873 (2012). https://doi.org/10.1007/s00213-011-2415-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2415-0

Keywords

Navigation