Skip to main content
Log in

Tolerance to cannabinoid-induced behaviors in mice treated chronically with ethanol

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Chronic ethanol (EtOH) treatment decreases the motor-impairing effects of cannabinoids and downregulates the cannabinoid type 1 (CB1) receptor. However, these studies have been limited to measures of ataxia and analysis of CB1 expression from whole-brain or hippocampal preparations.

Objective

To more fully assess the interactions between ethanol and cannabinoids, a tetrad of four well-characterized cannabinoid-induced behaviors (hypolocomotion, antinociception, hypothermia, and catalepsy) was measured in mice following EtOH treatment. Additionally, immunoblotting assessed CB1 protein in tissue from nine brain regions associated with these behaviors and the addiction neurocircuitry.

Materials and methods

Male C57Bl/6J mice were administered EtOH (0, 2, or 4 g/kg; intraperitoneally (i.p.)) twice daily for 10 days. Tetrad behaviors induced by the CB1 agonist WIN 55212-2 (3 mg/kg, i.p.) were measured in subjects 1 or 10 days following the last EtOH injection. In a separate group of animals, tissue was collected at the same time points for immunoblot analysis.

Results

EtOH-treated mice were less sensitive to the hypothermic, hypolocomotive, and antinociceptive effects of WIN, and this effect reversed to control levels over a 10-day abstinence period. EtOH treatment did not affect WIN-induced catalepsy. CB1 protein expression was significantly altered in several brain areas including the hypothalamus, periaqueductal gray, ventral tegmental area, and cerebellum.

Conclusions

These results show that chronic EtOH treatment significantly affects the behavioral sensitivity to cannabinoid drugs and alters CB1 expression in several brain regions. Furthermore, these effects are selective as some behaviors and brain regions display an altered response while others do not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal N, Pacher P, Tegeder I, Amaya F, Constantin CE, Brenner GJ, Rubino T, Michalski CW, Marsicano G, Monory K, Mackie K, Marian C, Batkai S, Parolaro D, Fischer MJ, Reeh P, Kunos G, Kress M, Lutz B, Woolf CJ, Kuner R (2007) Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci 10:870–879

    Article  PubMed  CAS  Google Scholar 

  • Aldridge GM, Podrebarac DM, Greenough WT, Weiler IJ (2008) The use of total protein stains as loading controls: an alternative to high-abundance single-protein controls in semi-quantitative immunoblotting. J Neurosci Methods 172:250–254

    Article  PubMed  CAS  Google Scholar 

  • Bannon AW, Malmberg AB (2007) Models of nociception: hot-plate, tail-flick, and formalin tests in rodents. Current Protocols in Neuroscience 41:8.9.1–8.9.16

  • Basavarajappa BS, Hungund BL (1999a) Chronic ethanol increases the cannabinoid receptor agonist anandamide and its precursor N-arachidonoylphosphatidylethanolamine in SK-N-SH cells. J Neurochem 72:522–528

    Article  PubMed  CAS  Google Scholar 

  • Basavarajappa BS, Hungund BL (1999b) Down-regulation of cannabinoid receptor agonist-stimulated [35S]GTP gamma S binding in synaptic plasma membrane from chronic ethanol exposed mouse. Brain Res 815:89–97

    Article  PubMed  CAS  Google Scholar 

  • Basavarajappa BS, Cooper TB, Hungund BL (1998) Chronic ethanol administration down-regulates cannabinoid receptors in mouse brain synaptic plasma membrane. Brain Res 793:212–218

    Article  PubMed  CAS  Google Scholar 

  • Basavarajappa BS, Saito M, Cooper TB, Hungund BL (2000) Stimulation of cannabinoid receptor agonist 2-arachidonylglycerol by chronic ethanol and its modulation by specific neuromodulators in cerebellar granule neurons. Biochim Biophys Acta 1535:78–86

    PubMed  CAS  Google Scholar 

  • Basavarajappa BS, Saito M, Cooper TB, Hungund BL (2003) Chronic ethanol inhibits the anandamide transport and increases extracellular anandamide levels in cerebellar granule neurons. Eur J Pharmacol 466:73–83

    Article  PubMed  CAS  Google Scholar 

  • Becker HC, Lopez MF (2004) Increased ethanol drinking after repeated chronic ethanol exposure and withdrawal experience in C57BL/6 mice. Alcohol Clin Exp Res 28:1829–1838

    Article  PubMed  CAS  Google Scholar 

  • Caillé S, Alvarez-Jaimes L, Polis I, Stouffer DG, Parsons LH (2007) Specific alterations of extracellular endocannabinoid levels in the nucleus accumbens by ethanol, heroin, and cocaine self-administration. J Neurosci 27:3695–3702

    Article  PubMed  Google Scholar 

  • Carriba P, Ortiz O, Patkar K, Justinova Z, Stroik J, Themann A, Müller C, Woods AS, Hope BT, Ciruela F, Casadó V, Canela EI, Lluis C, Goldberg SR, Moratalla R, Franco R, Ferré S (2007) Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32:2249–2259

    Article  PubMed  CAS  Google Scholar 

  • Compton DR, Gold LH, Ward SJ, Balster RL, Martin BR (1992) Aminoalkylindole analogs: cannabimimetic activity of a class of compounds structurally distinct from delta 9-tetrahydrocannabinol. J Pharmacol Exp Ther 263:1118–1126

    PubMed  CAS  Google Scholar 

  • Curto-Reyes V, Llames S, Hidalgo A, Menéndez L, Baamonde A (2010) Spinal and peripheral analgesic effects of the CB2 cannabinoid receptor agonist AM1241 in two models of bone cancer-induced pain. Br J Pharmacol 160:561–573

    Article  PubMed  CAS  Google Scholar 

  • da Silva GE, Morato GS, Takahashi RN (2001) Rapid tolerance to Delta(9)-tetrahydrocannabinol and cross-tolerance between ethanol and Delta(9)-tetrahydrocannabinol in mice. Eur J Pharmacol 431:201–207

    Article  PubMed  Google Scholar 

  • Fan F, Compton DR, Ward S, Melvin L, Martin BR (1994) Development of cross-tolerance between delta 9-tetrahydrocannabinol, CP 55,940 and WIN 55,212. J Pharmacol Exp Ther 271:1383–1390

    PubMed  CAS  Google Scholar 

  • Ferrer B, Bermúdez-Silva FJ, Bilbao A, Alvarez-Jaimes L, Sanchez-Vera I, Giuffrida A, Serrano A, Baixeras E, Khaturia S, Navarro M, Parsons LH, Piomelli D, Rodríguez de Fonseca F (2007) Regulation of brain anandamide by acute administration of ethanol. Biochem J 404:97–104

    Article  PubMed  CAS  Google Scholar 

  • Fitton AG, Pertwee RG (1982) Changes in body temperature and oxygen consumption rate of conscious mice produced by intrahypothalamic and intracerebroventricular injections of delta 9-tetrahydrocannabinol. Br J Pharmacol 75:409–414

    PubMed  CAS  Google Scholar 

  • Garzón J, de la Torre-Madrid E, Rodríguez-Muñoz M, Vicente-Sánchez A, Sánchez-Blázquez P (2009) Gz mediates the long-lasting desensitization of brain CB1 receptors and is essential for cross-tolerance with morphine. Mol Pain 5:11

    Article  PubMed  Google Scholar 

  • Gough AL, Olley JE (1977) delta9-Tetrahydrocannabinol and the extrapyramidal system. Psychopharmacology (Berl) 54:87–99

    Article  CAS  Google Scholar 

  • Gough AL, Olley JE (1978) Catalepsy induced by intrastriatal injections of delta9-THC and 11-OH-delta9-THC in the rat. Neuropharmacology 17:137–144

    Article  PubMed  CAS  Google Scholar 

  • Griffin WC, Lopez MF, Yanke AB, Middaugh LD, Becker HC (2009) Repeated cycles of chronic intermittent ethanol exposure in mice increases voluntary ethanol drinking and ethanol concentrations in the nucleus accumbens. Psychopharmacology (Berl) 201:569–580

    Article  CAS  Google Scholar 

  • Hojo M, Sudo Y, Ando Y, Minami K, Takada M, Matsubara T, Kanaide M, Taniyama K, Sumikawa K, Uezono Y (2008) mu-Opioid receptor forms a functional heterodimer with cannabinoid CB1 receptor: electrophysiological and FRET assay analysis. J Pharmacol Sci 108:308–319

    Article  PubMed  CAS  Google Scholar 

  • Houchi H, Babovic D, Pierrefiche O, Ledent C, Daoust M, Naassila M (2005) CB1 receptor knockout mice display reduced ethanol-induced conditioned place preference and increased striatal dopamine D2 receptors. Neuropsychopharmacology 30:339–349

    Article  PubMed  CAS  Google Scholar 

  • Hungund BL, Szakall I, Adam A, Basavarajappa BS, Vadasz C (2003) Cannabinoid CB1 receptor knockout mice exhibit markedly reduced voluntary alcohol consumption and lack alcohol-induced dopamine release in the nucleus accumbens. J Neurochem 84:698–704

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim MM, Rude ML, Stagg NJ, Mata HP, Lai J, Vanderah TW, Porreca F, Buckley NE, Makriyannis A, Malan TP (2006) CB2 cannabinoid receptor mediation of antinociception. Pain 122:36–42

    Article  PubMed  CAS  Google Scholar 

  • Jhaveri MD, Sagar DR, Elmes SJR, Kendall DA, Chapman V (2007) Cannabinoid CB2 receptor-mediated anti-nociception in models of acute and chronic pain. Mol Neurobiol 36:26–35

    Article  PubMed  CAS  Google Scholar 

  • Lemos JI, Takahashi RN, Morato GS (2007) Effects of SR141716 and WIN 55,212-2 on tolerance to ethanol in rats using the acute and rapid procedures. Psychopharmacology (Berl) 194:139–149

    Article  CAS  Google Scholar 

  • Lerner TN, Horne EA, Stella N, Kreitzer AC (2010) Endocannabinoid signaling mediates psychomotor activation by adenosine A2A antagonists. J Neurosci 30:2160–2164

    Article  PubMed  CAS  Google Scholar 

  • Lichtman AH, Martin BR (1991) Spinal and supraspinal components of cannabinoid-induced antinociception. J Pharmacol Exp Ther 258:517–523

    PubMed  CAS  Google Scholar 

  • Lichtman AH, Cook SA, Martin BR (1996) Investigation of brain sites mediating cannabinoid-induced antinociception in rats: evidence supporting periaqueductal gray involvement. J Pharmacol Exp Ther 276:585–593

    PubMed  CAS  Google Scholar 

  • Lopez MF, Becker HC (2005) Effect of pattern and number of chronic ethanol exposures on subsequent voluntary ethanol intake in C57BL/6J mice. Psychopharmacology (Berl) 181:688–696

    Article  CAS  Google Scholar 

  • MacAvoy MG, Marks DF (1975) Divided attention performance of cannabis users and non-users following cannabis and alcohol. Psychopharmacology (Berl) 44:147–152

    Article  CAS  Google Scholar 

  • Malec D, Kotlińska J, Langwiński R (1987) Cross-tolerance between morphine and ethanol and their antinociceptive effects. J Stud Alcohol 48:507–510

    PubMed  CAS  Google Scholar 

  • Martin BR, Compton DR, Thomas BF, Prescott WR, Little PJ, Razdan RK, Johnson MR, Melvin LS, Mechoulam R, Ward SJ (1991) Behavioral, biochemical, and molecular modeling evaluations of cannabinoid analogs. Pharmacol Biochem Behav 40:471–478

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Patrick S, Coffin P et al (1995) An examination of the central sites of action of cannabinoid-induced antinociception in the rat. Life Sci 56(23–24):2103–2109

    Article  PubMed  CAS  Google Scholar 

  • Martin WJ, Tsou K, Walker JM (1998) Cannabinoid receptor-mediated inhibition of the rat tail-flick reflex after microinjection into the rostral ventromedial medulla. Neurosci Lett 242:33–36

    Article  PubMed  CAS  Google Scholar 

  • Martin WJ, Coffin PO, Attias E, Balinsky M, Tsou K, Walker JM (1999) Anatomical basis for cannabinoid-induced antinociception as revealed by intracerebral microinjections. Brain Res 822:237–242

    Article  PubMed  CAS  Google Scholar 

  • Martini L, Waldhoer M, Pusch M, Kharazia V, Fong J, Lee JH, Freissmuth C, Whistler JL (2007) Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1. FASEB J 21:802–811

    Article  PubMed  CAS  Google Scholar 

  • Martini L, Thompson D, Kharazia V, Whistler JL (2010) Differential regulation of behavioral tolerance to WIN55,212-2 by GASP1. Neuropsychopharmacology 35:1363–1373

    Article  PubMed  CAS  Google Scholar 

  • Mitrirattanakul S, López-Valdés HE, Liang J, Matsuka Y, Mackie K, Faull KF, Spigelman I (2007) Bidirectional alterations of hippocampal cannabinoid 1 receptors and their endogenous ligands in a rat model of alcohol withdrawal and dependence. Alcohol Clin Exp Res 31:855–867

    Article  PubMed  CAS  Google Scholar 

  • Mulholland PJ, Chandler LJ (2010) Inhibition of glutamate transporters couples to Kv4.2 dephosphorylation through activation of extrasynaptic NMDA receptors. Neuroscience 165:130–137

    Article  PubMed  CAS  Google Scholar 

  • Newman LM, Lutz MP, Gould MH, Domino EF (1972) 9 -Tetrahydrocannabinol and ethyl alcohol: evidence for cross-tolerance in the rat. Science 175:1022–1023

    Article  PubMed  CAS  Google Scholar 

  • Newman LM, Lutz MP, Domino EF (1974) Delta9-tetrahydrocannabinol and some CNS depressants: evidence for cross-tolerance in the rat. Arch Int Pharmacodyn Ther 207:254–259

    PubMed  CAS  Google Scholar 

  • NIAAA (2009) Five year strategic plan, FY 09-14‎. 110

  • Perra S, Pillolla G, Melis M, Muntoni AL, Gessa GL, Pistis M (2005) Involvement of the endogenous cannabinoid system in the effects of alcohol in the mesolimbic reward circuit: electrophysiological evidence in vivo. Psychopharmacology (Berl) 183:368–377

    Article  CAS  Google Scholar 

  • Pertwee RG (1972) The ring test: a quantitative method for assessing the 'cataleptic' effect of cannabis in mice. Br J Pharmacol 46:753–763

    PubMed  CAS  Google Scholar 

  • Prencipe L, Iaccheri E, Manzati C (1987) Enzymatic ethanol assay: a new colorimetric method based on measurement of hydrogen peroxide. Clin Chem 33:486–489

    PubMed  CAS  Google Scholar 

  • Rahn EJ, Zvonok AM, Thakur GA, Khanolkar AD, Makriyannis A, Hohmann AG (2008) Selective activation of cannabinoid CB2 receptors suppresses neuropathic nociception induced by treatment with the chemotherapeutic agent paclitaxel in rats. J Pharmacol Exp Ther 327:584–591

    Article  PubMed  CAS  Google Scholar 

  • Rawls SM, Cabassa J, Geller EB, Adler MW (2002) CB1 receptors in the preoptic anterior hypothalamus regulate WIN 55212–2 [(4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrrolo[3,2,1ij]quinolin-6-one]-induced hypothermia. J Pharmacol Exp Ther 301:963–968

    Article  PubMed  CAS  Google Scholar 

  • Siemens AJ, Doyle OL (1979) Cross-tolerance between delta9-tetrahydrocannabinol and ethanol: the role of drug disposition. Pharmacol Biochem Behav 10:49–55

    Article  PubMed  CAS  Google Scholar 

  • Sprague GL, Craigmill AL (1976) Ethanol and delta-9-tetrahydrocannabinol: mechanism for cross-tolerance in mice. Pharmacol Biochem Behav 5:409–415

    Article  PubMed  CAS  Google Scholar 

  • Tappe-Theodor A, Agarwal N, Katona I, Rubino T, Martini L, Swiercz J, Mackie K, Monyer H, Parolaro D, Whistler J, Kuner T, Kuner R (2007) A molecular basis of analgesic tolerance to cannabinoids. J Neurosci 27:4165–4177

    Article  PubMed  CAS  Google Scholar 

  • Vinod KY, Yalamanchili R, Xie S, Cooper TB, Hungund BL (2006) Effect of chronic ethanol exposure and its withdrawal on the endocannabinoid system. Neurochem Int 49:619–625

    Article  PubMed  CAS  Google Scholar 

  • Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI (1999) Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci USA 96:5780–5785

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grants P50AA10761 (Charleston Alcohol Research Center; JJW), F31AA018908 (MJP), and R00AA017922 (PJM). The L15 antibody was a kind gift of Dr. Ken Mackie (NIH Grant DA011322).

Conflicts of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Woodward.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 754 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pava, M.J., Blake, E.M., Green, S.T. et al. Tolerance to cannabinoid-induced behaviors in mice treated chronically with ethanol. Psychopharmacology 219, 137–147 (2012). https://doi.org/10.1007/s00213-011-2387-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2387-0

Keywords

Navigation