Psychopharmacology

, Volume 219, Issue 1, pp 47–58 | Cite as

Group I metabotropic glutamate receptor antagonists alter select behaviors in a mouse model for fragile X syndrome

  • Alexia M. Thomas
  • Nghiem Bui
  • Jennifer R. Perkins
  • Lisa A. Yuva-Paylor
  • Richard Paylor
Original Investigation

Abstract

Rationale

Studies in the Fmr1 knockout (KO) mouse, a model of fragile X syndrome (FXS), suggest that excessive signaling through group I metabotropic glutamate receptors (mGluRs), comprised of subtypes mGluR1 and mGluR5, may play a role in the pathogenesis of FXS. Currently, no studies have assessed the effect of mGluR1 modulation on Fmr1 KO behavior, and there has not been an extensive behavioral analysis of mGluR5 manipulation in Fmr1 KO mice.

Objectives

The goals for this study were to determine if pharmacologic blockade of mGluR1 may affect Fmr1 KO behavior as well as to expand on the current literature regarding pharmacologic blockade of mGluR5 on Fmr1 KO behavior.

Methods

Reduction of mGluR1 or mGluR5 activity was evaluated on a variety of behavioral assays in wild-type (WT) and Fmr1 KO mice through the use of antagonists: JNJ16259685 (JNJ, mGluR1 antagonist) and MPEP (mGluR5 antagonist).

Results

JNJ and MPEP decreased marble burying in both WT and Fmr1 KO mice without reductions in activity. Neither JNJ nor MPEP affected the prepulse inhibition in either WT or Fmr1 KO mice. JNJ did not affect Fmr1 KO motor coordination but did impair WT performance. MPEP improved a measure of motor learning in Fmr1 KO but not WT mice. While both JNJ and MPEP decreased the audiogenic seizures in the Fmr1 KO, MPEP completely abolished the manifestation of seizures.

Conclusion

These data illustrate that, while the manipulation of either mGluR1 or mGluR5 can affect select behaviors in the Fmr1 KO, we observe greater effects upon mGluR5 reduction.

Keywords

Fragile X Fmr1 Metabotropic glutamate receptor Mouse Behavior 

References

  1. Aiba A, Kano M, Chen C, Stanton ME, Fox GD, Herrup K, Zwingman TA, Tonegawa S (1994) Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 79:377–388. doi:10.1016/0092-8674(94)90205-4 PubMedCrossRefGoogle Scholar
  2. Bakker CE, Verheij C, Willemsen R, van der Helm R, Oerlemans F, Vermey M, Bygrave A, Hoogeveen AT, Oostra BA, Reyniers E, De Boule K, D’Hooge R, Cras P, van Velzen D, Nagels G, Martin JJ, De Deyn PP, Darby JK, Willems PJ (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78:23–33. doi:10.1016/0092-8674(94)90569-X Google Scholar
  3. Bates G, Harper P, Jones L (2002) Huntington’s disease, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  4. Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27:370–377. doi:10.1016/j.tins.2004.04.009 PubMedCrossRefGoogle Scholar
  5. Bontekoe CJ, McIlwain KL, Nieuwenhuizen IM, Yuva-Paylor LA, Nellis A, Willemsen R, Fang Z, Kirkpatrick L, Bakker CE, McAninch R, Cheng NC, Merriweather M, Hoogeveen AT, Nelson D, Paylor R, Oostra BA (2002) Knockout mouse model for Fxr2: a model for mental retardation. Hum Mol Genet 11:487–498. doi:10.1093/hmg/11.5.487 PubMedCrossRefGoogle Scholar
  6. Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156:234–258. doi:10.1007/s002130100810 CrossRefGoogle Scholar
  7. Brody SA, Geyer MA (2004) Interactions of the mGluR5 gene with breeding and maternal factors on startle and prepulse inhibition in mice. Neurotox Res 6:79–90PubMedCrossRefGoogle Scholar
  8. Broekkamp CL, Rijk HW, Joly-Gelouin D, Lloyd KL (1986) Major tranquillizers can be distinguished from minor tranquillizers on the basis of effects on marble burying and swim-induced grooming in mice. Eur J Pharmacol 126:223–229PubMedCrossRefGoogle Scholar
  9. Busse CS, Brodkin J, Tattersall D, Anderson JJ, Warren N, Tehrani L, Bristow LJ, Varney MA, Cosford ND (2004) The behavioral profile of the potent and selective mGlu5 receptor antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) in rodent models of anxiety. Neuropsychopharmacology 29:1971–1979. doi:10.1038/sj.npp.1300540 PubMedCrossRefGoogle Scholar
  10. Chen L, Toth M (2001) Fragile X mice develop sensory hyperreactivity to auditory stimuli. Neuroscience 103:1043–1050. doi:10.1016/S0306-4522(01)00036-7 PubMedCrossRefGoogle Scholar
  11. Conn PJ, Battaglia G, Marino MJ, Nicoletti F (2005) Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 6:787–798. doi:10.1038/nrn1763 PubMedCrossRefGoogle Scholar
  12. Conquet F, Bashir ZI, Davies CH, Daniel H, Ferraguti F, Bordi F, Franz-Bacon K, Reggiani A, Matarese V, Condé F, Collingridge GL, Crepel F (1994) Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature 372:237–243. doi:10.1038/372237a0 PubMedCrossRefGoogle Scholar
  13. D’Hulst C, Kooy RF (2009) Fragile X syndrome: from molecular genetics to therapy. J Med Genet 46:577–584. doi:10.1136/jmg.2008.064667 PubMedCrossRefGoogle Scholar
  14. de Vrij FMS, Levenga J, van der Linde HC, Koekkoek SK, De Zeeuw CI, Nelson DL, Oostra BA, Willemsen R (2008) Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice. Neurobiol Dis 31:127–132. doi:10.1016/j.nbd.2008.04.002 PubMedCrossRefGoogle Scholar
  15. Dhami GK, Ferguson SSG (2006) Regulation of metabotropic glutamate receptor signaling, desensitization and endocytosis. Pharmacol Ther 111:260–271. doi:10.1016/j.pharmthera.2005.01.008 PubMedCrossRefGoogle Scholar
  16. Dolen G, Osterweil E, Rao BS, Smith GB, Auerbach BD, Chattarji S, Bear MF (2007) Correction of fragile X syndrome in mice. Neuron 56:955–962. doi:10.1016/j.neuron.2007.12.001 PubMedCrossRefGoogle Scholar
  17. Dolen G, Carpenter RL, Ocain TD, Bear MF (2010) Mechanism-based approaches to treating fragile X. Pharmacol Ther 127:78–93. doi:10.1016/j.pharmthera.2010.02.008 PubMedCrossRefGoogle Scholar
  18. El-Kouhen O, Lehto SG, Pan JB, Chang R, Baker SJ, Zhong C, Hollingsworth PR, Mikusa JP, Cronin EA, Chu KL, McGaraughty SP, Uchic ME, Miller LN, Rodell NM, Patel M, Bhatia P, Mezler M, Kolasa T, Zheng GZ, Fox GB, Stewart AO, Decker MW, Moreland RB, Brioni JD, Honore P (2006) Blockade of mGluR1 receptor results in analgesia and disruption of motor and cognitive performances: effects of A-841720, a novel non-competitive mGluR1 receptor antagonist. Br J Pharmacol 149:761–774. doi:10.1038/sj.bjp.0706877 PubMedCrossRefGoogle Scholar
  19. Faas G, Adwanikar H, Gereau RWT, Saggau P (2002) Modulation of presynaptic calcium transients by metabotropic glutamate receptor activation: a differential role in acute depression of synaptic transmission and long-term depression. J Neurosci 22:6885–6890PubMedGoogle Scholar
  20. Frankland PW, Wang Y, Rosner B, Shimizu T, Balleine BW, Dykens EM, Ornitz EM, Silva AJ (2004) Sensorimotor gating abnormalities in young males with fragile X syndrome and Fmr1-knockout mice. Mol Psychiatry 9:417–425. doi:10.1038/sj.mp.4001432 PubMedCrossRefGoogle Scholar
  21. Gasparini F, Lingenhöhl K, Stoehr N, Flor PJ, Heinrich M, Vranesic I, Biollaz M, Allgeier H, Heckendorn R, Urwyler S, Varney MA, Johnson EC, Hess SD, Rao SP, Sacaan AI, Santori EM, Veliçelebi G, Kuhn R (1999) 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 38:1493–1503. doi:10.1016/S0028-3908(99)00082-9 PubMedCrossRefGoogle Scholar
  22. Hagerman RJ, Hagerman PJ (2002) Fragile X syndrome: diagnosis, treatment, and research, 3rd edn. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  23. Hagerman RJ, Berry-Kravis E, Kaufmann WE, Ono MY, Tartaglia N, Lachiewicz A, Kronk R, Delahunty C, Hessl D, Visootsak J, Picker J, Gane L, Tranfaglia M (2009) Advances in the treatment of fragile X syndrome. Pediatrics 123:378–390. doi:10.1542/peds.2008-0317 PubMedCrossRefGoogle Scholar
  24. Hall SS, Lightbody AA, Reiss AL (2008) Compulsive, self-injurious, and autistic behavior in children and adolescents with fragile X syndrome. Am J Ment Retard 113:44–53PubMedCrossRefGoogle Scholar
  25. Henry SA, Lehmann-Masten V, Gasparini F, Geyer MA, Markou A (2002) The mGluR5 antagonist MPEP, but not the mGluR2/3 agonist LY314582, augments PCP effects on prepulse inhibition and locomotor activity. Neuropharmacology 43:1199–1209. doi:10.1016/S0028-3908(02)00332-5 PubMedCrossRefGoogle Scholar
  26. Hikichi H, Nishino M, Fukushima M, Satow A, Maehara S, Kawamoto H, Ohta H (2010) Pharmacological effects of metabotropic glutamate receptor ligands on prepulse inhibition in DBA/2J mice. Eur J Pharmacol 639:99–105. doi:10.1016/j.ejphar.2010.03.046 PubMedCrossRefGoogle Scholar
  27. Hodgson RA, Hyde LA, Guthrie DH, Cohen-Williams ME, Leach PT, Kazdoba TM, Bleickardt CJ, Lu SX, Parker EM, Varty GB (2011) Characterization of the selective mGluR1 antagonist, JNJ16259685, in rodent models of movement and coordination. Pharmacol Biochem Behav 98:181–187. doi:10.1016/j.pbb.2010.11.018 PubMedCrossRefGoogle Scholar
  28. Hou L, Klann E (2004) Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J Neurosci 24:6352–6361. doi:10.1152/jn.00383.2005 PubMedCrossRefGoogle Scholar
  29. Huang CC, Hsu KS (2006) Sustained activation of metabotropic glutamate receptor 5 and protein tyrosine phosphatases mediate the expression of (S)-3,5-dihydroxyphenylglycine-induced long-term depression in the hippocampal CA1 region. J Neurochem 96:179–194. doi:10.1111/j.1471-4159.2005.03527.x PubMedCrossRefGoogle Scholar
  30. Huang CC, You JL, Wu MY, Hsu KS (2004) Rap1-induced p38 mitogen-activated protein kinase activation facilitates AMPA receptor trafficking via the GDI.Rab5 complex. Potential role in (S)-3,5-dihydroxyphenylglycene-induced long term depression. J Biol Chem 279:12286–12292. doi:10.1074/jbc.M312868200 PubMedCrossRefGoogle Scholar
  31. Huber KM, Roder JC, Bear MF (2001) Chemical induction of mGluR5- and protein synthesis-dependent long-term depression in hippocampal area CA1. J Neurophysiol 86:321–325PubMedGoogle Scholar
  32. Huber KM, Gallagher SM, Warren ST, Bear MF (2002) Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci USA 99:7746–7750. doi:10.1073/pnas.122205699 PubMedCrossRefGoogle Scholar
  33. Kandel ER, Schwartz JH, Jessell TM (2000) The cerebellum. Principles of neural science, 4th edn. McGraw-Hill, New York, pp 832–852Google Scholar
  34. Koekkoek SKE, Yamaguchi K, Milojkovic BA, Dortland BR, Ruigrok TJH, Maex R, De Graaf W, Smit AE, VanderWerf F, Bakker CE, Willemsen R, Ikeda T, Kakizawa S, Onodera K, Nelson DL, Mientjes E, Joosten M, De Schutter E, Oostra BA, Ito M, De Zeeuw CI (2005) Deletion of FMR1 in purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in fragile X syndrome. Neuron 47:339–352. doi:10.1016/j.neuron.2005.07.005 PubMedCrossRefGoogle Scholar
  35. Lavreysen H, Wouters R, Bischoff F, Nóbrega Pereira S, Langlois X, Blokland S, Somers M, Dillen L, Lesage AS (2004) JNJ16259685, a highly potent, selective and systemically active mGlu1 receptor antagonist. Neuropharmacology 47:961–972. doi:10.1016/j.neuropharm.2004.08.007 PubMedCrossRefGoogle Scholar
  36. Lu YM, Jia Z, Janus C, Henderson JT, Gerlai R, Wojtowicz JM, Roder JC (1997) Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J Neurosci 17:5196–5205PubMedGoogle Scholar
  37. Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogyi P (1996) Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci 8:1488–1500. doi:10.1111/j.1460-9568.1996.tb01611.x PubMedCrossRefGoogle Scholar
  38. McBride SM, Choi CH, Wang Y, Liebelt D, Braunstein E, Ferreiro D, Sehgal A, Siwicki KK, Dockendorff TC, Nguyen HT, McDonald TV, Jongens TA (2005) Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 45:753–764. doi:10.1016/j.neuron.2005.01.038 PubMedCrossRefGoogle Scholar
  39. Muddashetty RS, Kelić S, Gross C, Xu M, Bassell GJ (2007) Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome. J Neurosci 27:5338–5348. doi:10.1523/JNEUROSCI.0937-07.2007 PubMedCrossRefGoogle Scholar
  40. Musumeci SA, Bosco P, Calabrese G, Bakker C, De Sarro GB, Elia M, Ferri R, Oostra BA (2000) Audiogenic seizures susceptibility in transgenic mice with fragile X syndrome. Epilepsia 41:19–23PubMedCrossRefGoogle Scholar
  41. Nielsen DM, Derber WJ, McClellan DA, Crnic LS (2002) Alterations in the auditory startle response in Fmr1 targeted mutant mouse models of fragile X syndrome. Brain Res 927:8–17. doi:10.1016/S0006-8993(01)03309-1 PubMedCrossRefGoogle Scholar
  42. Njung’e K, Handley SL (1991) Effects of 5-HT uptake inhibitors, agonists and antagonists on the burying of harmless objects by mice; a putative test for anxiolytic agents. Br J Pharmacol 104:105–112PubMedGoogle Scholar
  43. Paylor R, Yuva-Paylor LA, Nelson DL, Spencer CM (2008) Reversal of sensorimotor gating abnormalities in Fmr1 knockout mice carrying a human FMR1 transgene. Behav Neurosci 122:1371–1377. doi:10.1037/a0013047 PubMedCrossRefGoogle Scholar
  44. Peier AM, McIlwain KL, Kenneson A, Warren ST, Paylor R, Nelson DL (2000) (Over)correction of FMR1 deficiency with YAC transgenics: behavioral and physical features. Hum Mol Genet 9:1145–1159. doi:10.1093/hmg/9.8.1145 PubMedCrossRefGoogle Scholar
  45. Pietraszek M, Gravius A, Schafer D, Weil T, Trifanova D, Danysz W (2005) mGluR5, but not mGluR1, antagonist modifies MK-801-induced locomotor activity and deficit of prepulse inhibition. Neuropharmacology 49:73–85. doi:10.1016/j.neuropharm.2005.01.027 PubMedCrossRefGoogle Scholar
  46. Schiefer J, Sprünken A, Puls C, Lüesse HG, Milkereit A, Milkereit E, Johann V, Kosinski CM (2004) The metabotropic glutamate receptor 5 antagonist MPEP and the mGluR2 agonist LY379268 modify disease progression in a transgenic mouse model of Huntington's disease. Brain Res 1019:246–254. doi:10.1016/j.brainres.2004.06.005 PubMedCrossRefGoogle Scholar
  47. Schulz B, Fendt M, Gasparini F, Lingenhohl K, Kuhn R, Koch M (2001) The metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) blocks fear conditioning in rats. Neuropharmacology 41:1–7. doi:10.1016/S0028-3908(01)00036-3 PubMedCrossRefGoogle Scholar
  48. Shigemoto R, Mizuno N (2000) Metabotropic glutamate receptors—immunocytochemical and in situ hybridization analyses. Handb Chem Neuroanat 18:63–98. doi:10.1016/S0924-8196(00)80044-5 CrossRefGoogle Scholar
  49. Spencer CM, Alekseyenko O, Hamilton SM, Thomas AM, Serysheva E, Yuva-Paylor LA, Paylor R (2011) Modifying behavioral phenotypes in Fmr1 KO mice: genetic background differences reveal autistic-like responses. Autism Res 4:40–56. doi:10.1002/aur.168 PubMedCrossRefGoogle Scholar
  50. Spooren WPJM, Gasparini F, Bergmann R, Kuhn R (2000a) Effects of the prototypical mGlu(5) receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine on rotarod, locomotor activity and rotational responses in unilateral 6-OHDA-lesioned rats. Eur J Pharmacol 406:403–410. doi:10.1016/S0014-2999(00)00697-X PubMedCrossRefGoogle Scholar
  51. Spooren WPJM, Vassout A, Neijt HC, Kuhn R, Gasparini F, Roux S, Porsolt RD, Gentsch C (2000b) Anxiolytic-like effects of the prototypical metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine in rodents. J Pharmacol Exp Ther 295:1267–1275PubMedGoogle Scholar
  52. Tatarczyńska E, Kłodzińska A, Chojnacka-Wójcik E, Pałucha A, Gasparini F, Kuhn R, Pilc A (2001) Potential anxiolytic- and antidepressant-like effects of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist. Br J Pharmacol 132:1423–1430. doi:10.1038/sj.bjp.0703923 PubMedCrossRefGoogle Scholar
  53. Thomas A, Burant A, Bui N, Graham D, Yuva-Paylor LA, Paylor R (2009) Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety. Psychopharmacology (Berl) 204:361–373. doi:10.1007/s00213-009-1466-y CrossRefGoogle Scholar
  54. Todd PK, Mack KJ, Malter JS (2003) The fragile X mental retardation protein is required for type-I metabotropic glutamate receptor-dependent translation of PSD-95. Proc Natl Acad Sci USA 100:14374–14378. doi:10.1073/pnas.2336265100 PubMedCrossRefGoogle Scholar
  55. Tucker B, Richards RI, Lardelli M (2006) Contribution of mGluR and Fmr1 functional pathways to neurite morphogenesis, craniofacial development and fragile X syndrome. Hum Mol Genet 15:3446–3458. doi:10.1093/hmg/ddl422 PubMedCrossRefGoogle Scholar
  56. Varty GB, Grilli M, Forlani A, Fredduzzi S, Grzelak ME, Guthrie DH, Hodgson RA, Lu SX, Nicolussi E, Pond AJ, Parker EM, Hunter JC, Higgins GA, Reggiani A, Bertorelli R (2005) The antinociceptive and anxiolytic-like effects of the metabotropic glutamate receptor 5 (mGluR5) antagonists, MPEP and MTEP, and the mGluR1 antagonist, LY456236, in rodents: a comparison of efficacy and side-effect profiles. Psychopharmacology (Berl) 179:207–217. doi:10.1007/s00213-005-2143-4 CrossRefGoogle Scholar
  57. Volk LJ, Daly CA, Huber KM (2006) Differential roles for group I mGluR subtypes in induction and expression of chemically induced hippocampal long-term depression. J Neurophysiol 95:2427–2438. doi:10.1152/jn.00383.2005 PubMedCrossRefGoogle Scholar
  58. Walker K, Bowes M, Panesar M, Davis A, Gentry C, Kesingland A, Gasparini F, Spooren W, Stoehr N, Pagano A, Flor PJ, Vranesic I, Lingenhoehl K, Johnson EC, Varney M, Urban L, Kuhn R (2001) Metabotropic glutamate receptor subtype 5 (mGlu5) and nociceptive function. I. Selective blockade of mGlu5 receptors in models of acute, persistent and chronic pain. Neuropharmacology 40:1–9. doi:10.1016/S0028-3908(00)00113-1 PubMedCrossRefGoogle Scholar
  59. Yan QJ, Asafo-Adjei PK, Arnold HM, Brown RE, Bauchwitz RP (2004) A phenotypic and molecular characterization of the fmr1-tm1Cgr Fragile X mouse. Genes Brain Behav 3:337–359. doi:10.1111/j.1601-183X.2004.00087.x PubMedCrossRefGoogle Scholar
  60. Yan QJ, Rammal M, Tranfaglia M, Bauchwitz RP (2005) Suppression of two major fragile X syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 49:1053–1066. doi:10.1016/j.neuropharm.2005.06.004 PubMedCrossRefGoogle Scholar
  61. Zou D, Huang J, Wu X, Li L (2007) Metabotropic glutamate subtype 5 receptors modulate fear-conditioning induced enhancement of prepulse inhibition in rats. Neuropharmacology 52:476–486. doi:10.1016/j.neuropharm.2006.08.016 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Alexia M. Thomas
    • 1
  • Nghiem Bui
    • 2
  • Jennifer R. Perkins
    • 2
  • Lisa A. Yuva-Paylor
    • 2
  • Richard Paylor
    • 1
    • 2
  1. 1.Department of NeuroscienceBaylor College of MedicineHoustonUSA
  2. 2.Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUSA

Personalised recommendations