Skip to main content
Log in

Translational PK–PD modelling of molecular target modulation for the AMPA receptor positive allosteric modulator Org 26576

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Introduction

The α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor potentiator Org 26576 represents an interesting pharmacological tool to evaluate the utility of glutamatergic enhancement towards the treatment of psychiatric disorders. In this study, a rat–human translational pharmacokinetic–pharmacodynamic (PK–PD) model of AMPA receptor modulation was used to predict human target engagement and inform dose selection in efficacy clinical trials.

Methods

Modelling and simulation was applied to rat plasma and cerebrospinal fluid (CSF) pharmacokinetic and pharmacodynamic measurements to identify a target concentration (EC80) for AMPA receptor modulation. Human plasma pharmacokinetics was determined from 33 healthy volunteers and eight major depressive disorder patients. From four out of these eight patients, CSF PK was also determined. Simulations of human CSF levels were performed for several doses of Org 26576.

Results

Org 26576 (0.1–10 mg/kg, i.v.) potentiated rat hippocampal AMPA receptor responses in an exposure-dependant manner. The rat plasma and CSF PK data were fitted by one-compartment model each. The rat CSF PK–PD model yielded an EC80 value of 593 ng/ml (90% confidence interval 406.8, 1,264.1). The human plasma and CSF PK data were simultaneously well described by a two-compartment model. Simulations showed that in humans at 100 mg QD, CSF levels of Org 26576 would exceed the EC80 target concentration for about 2 h and that 400 mg BID would engage AMPA receptors for 24 h.

Conclusion

The modelling approach provided useful insight on the likely human dose–molecular target engagement relationship for Org 26576. Based on the current analysis, 100 and 400 mg BID would be suitable to provide ‘phasic’ and ‘continuous’ AMPA receptor engagement, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arai AC, Kessler M (2007) Pharmacology of ampakine modulators: from AMPA receptors to synapses and behaviour. Curr Drug Targets 8:583–602

    Article  PubMed  CAS  Google Scholar 

  • Bigge CF (1999) Ionotropic glutamate receptors. Curr Opin Chem Biol 3:441–447

    Article  PubMed  CAS  Google Scholar 

  • Bowie D (2008) Ionotropic glutamate receptors & CNS disorders. CNS Neurol Disord Drug Targets 7(2):129–143

    Article  PubMed  CAS  Google Scholar 

  • Broberg BV, Glenthøj BY, Dias R, Larsen DB, Olsen CK (2009) Reversal of cognitive deficits by an ampakine (CX516) and sertindole in two animal models of schizophrenia-sub-chronic and early postnatal PCP treatment in attentional set-shifting. Psychopharmacology 206(4):631–640

    Article  PubMed  CAS  Google Scholar 

  • Damgaard T, Larsen DB, Hansen SL, Grayson B, Neill JC, Plath N (2010) Positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors reverses sub-chronic PCP-induced deficits in the novel object recognition task in rats. Behav Brain Res 207(1):144–150

    Article  PubMed  CAS  Google Scholar 

  • Danhof M, de Lange ECM, Della Pasqua OE, Ploeger BA, Voskuyl RA (2008) Mechanism-based pharmacokinetic–pharmacodynamic (PK-PD) modeling in translational drug research. Trends Pharmacol Sci 29:186–191

    Article  PubMed  CAS  Google Scholar 

  • de Lange ECM, Danhof M (2002) Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin Pharmacokinet 41:691–703

    Article  PubMed  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–61

    PubMed  CAS  Google Scholar 

  • Erdemli G, Smith LH, Sammons M, Jeggo R, Shahid M (2007) Org 26576, a novel positive allosteric modulator, potentiates AMPA receptor responses in hippocampal neurones. J Neuropsychopharmacol 21:A51

    Google Scholar 

  • Goff DC, Leahy L, Berman I, Posever T, Herz L, Leon AC, Johnson SA, Lynch G (2001) A placebo-controlled pilot study of the ampakine CX516 added to clozapine in schizophrenia. J Clin Psycopharmacol 21:484–487

    Article  CAS  Google Scholar 

  • Goff DC, Lambert JS, Leon AC, Green MF, Miller AL, Patel J, Manschreck T, Freudenreich O, Johnson SA (2008) A placebo-controlled add-on trial of the ampakine, CX516, for cognitive deficits in schizophrenia. Neuropsychopharmacol 33:465–472

    Article  CAS  Google Scholar 

  • Hamlyn E, Brand L, Shahid M, Harvey BH (2009) The ampakine, Org 26576, bolsters early spatial reference learning and retrieval in the Morris water maze: a subchronic, dose-ranging study in rats. Behav Pharmacol 20(7):662–667

    Article  PubMed  CAS  Google Scholar 

  • Hampson RE, Rogers G, Lynch G, Deadwyler SA (1998a) Facilitative effects of the ampakine CX516 on short-term memory in rats: enhancement of delayed-no match-to-sample performance. J Neurosci 18:2740–2747

    PubMed  CAS  Google Scholar 

  • Hampson RE, Rogers G, Lynch G, Deadwyler SA (1998b) Facilitative effects of the ampakine CX516 on short-term memory in rats: correlations with hippocampal neuronal activity. J Neurosci 18:2748–2763

    PubMed  CAS  Google Scholar 

  • Hutmacher MM, Bursi R, Chapel S, Kerbusch T (2008) Implications for animal–human scaling of the parallel elimination profile PK model. Abstract 1374, Population Approach Group Europe, 17th Meeting, 18–20 June, Marseille, France

  • Ito I, Tanabe S, Kohda A, Sugiyama H (1990) Allosteric potentiation of quisqualate receptors by a nootropic drug aniracetam. J Physiol 424:533–543

    PubMed  CAS  Google Scholar 

  • Jeggo RD, Wang Y, Jordan D, Ramage AG (2007) Activation of 5-HT1B and 5-HT1D receptors in the rat nucleus tractus solitarius: opposing action on neurones that receive an excitatory vagal C-fibre afferent input. Br J Pharmacol 150:987–995

    Article  PubMed  CAS  Google Scholar 

  • Johnson SA, Luu NT, Herbst TA, Knapp R, Lutz D, Arai A, Rogers GA, Lynch G (1999) Synergistic interactions between ampakines and antipsychotic drugs. L Pharmacol Exp Ther 289(1):392–397

    CAS  Google Scholar 

  • Jordan GR, McCulloch J, Shahid M, Hill DR, Henry B, Horsburgh K (2005) Regionally selective and dose-dependent effects of the ampakines Org 26576 and Org 24448 on local cerebral glucose utilisation in the mouse as assessed by 14C-2-deoxyglucose autoradiography. Neuropharmacology 49:254–264

    Article  PubMed  CAS  Google Scholar 

  • Kew JN, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology 179(1):4–29

    Article  PubMed  CAS  Google Scholar 

  • Knapp RJ, Goldenberg R, Shuck C, Cecil A, Watkins J, Miller C, Crites G, Malatynska E (2002) Antidepressant activity of memory-enhancing drugs in the reduction of submissive behaviour model. Eur J Pharmacol 440(1):27–35

    Article  PubMed  CAS  Google Scholar 

  • Larson J, Quach CN, LeDuc BQ, Nguyen A, Rogers GA, Lynch G (1996) Effects of an AMPA receptor modulator on methamphetamine-induced hyperactivity in rats. Brain Res 738:353–356

    Article  PubMed  CAS  Google Scholar 

  • Li X, Tizzano JP, Griffey K, Clay M, Lindstrom T, Skolnick P (2001) Antidepressant-like actions of an AMPA receptor potentiator (LY392098). Neuropharmacology 40:1028–1033

    Article  PubMed  CAS  Google Scholar 

  • Lynch G (2004) AMPA receptor modulators as cognitive enhancers. Curr Opin Pharmacol 4:4–11

    Article  PubMed  CAS  Google Scholar 

  • Lynch G (2006) Glutamate-based therapeutic approaches: ampakines. Curr Opin Pharmacol 6:82–88

    Article  PubMed  CAS  Google Scholar 

  • Lynch G, Gall CM (2006) Ampakines and the threefold path to cognitive enhancement. Trends Neurosci 29:554–562

    Article  PubMed  CAS  Google Scholar 

  • Mager DE, Jusko WJ (2008) Development of translational pharmacokinetic–pharmacodynamic models. Clin Pharm Ther 83:909–912

    Article  CAS  Google Scholar 

  • Mankoff SP, Brander C, Ferrone S, Marincola FM (2004) Lost in translation: obstacles to translational medicine. J Transl Med 2:1–5

    Article  Google Scholar 

  • Nikisch G, Baumann P, Kiessling B, Reinert M, Wiedemann G, Kehr J, Mathé AA, Piel M, Roesch F, Weisser H, Schneider P, Hertel A (2010) Relationship between dopamine D2 receptor occupancy, clinical response, and drug and monoamine metabolites levels in plasma and cerebrospinal fluid. A pilot study in patients suffering from first-episode schizophrenia treated with quetiapine. J Psychiatr Res 44:754–759

    Article  PubMed  Google Scholar 

  • Olsen CK, Kreilgaard M, Didriksen M (2006) Positive modulation of glutamatergic receptors potentiates the suppressive effects of antipsychotics on conditioned avoidance responding in rats. Pharmacol Biochem Behav 84(2):259–265

    Article  PubMed  CAS  Google Scholar 

  • O’Neill MJ, Bleakman D, Zimmerman DM, Nisenbaum ES (2004a) AMPA receptor potentiators for the treatment of CNS disorders. Curr Drug Targets CNS Neurol Disord 3(3):181–194

    Article  PubMed  Google Scholar 

  • O’Neill MJ, Murray TK, Whalley K, Ward MA, Hicks CA, Woodhouse S, Osborne DJ, Skolnick P (2004b) Neurotrophic actions of the novel AMPA receptor potentiator LY404187, in rodent models of Parkinson’s disease. Eur J Pharmacol 486:163–174

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic Press, Sidney, p 154

  • Porrino LJ, Daunais JB, Rogers GA, Hampson RE, Deadwyler SA (2005) Facilitation of task performance and removal of the effects of sleep deprivation by an ampakine (CX717) in nonhuman primates. PLoS Biol 3:1639–1652

    Article  CAS  Google Scholar 

  • Sheiner LB, Steimer J-L (2000) Pharmacokinetic/pharmacodynamic modeling in drug development. Annu Rev Pharacol Toxicol 40:67–95

    Article  CAS  Google Scholar 

  • Su XW, Li XY, Banasr M, Koo JW, Shahid M, Henry B, Duman RS (2009) Chronic treatment with AMPA receptor potentiator Org 26576 increases neuronal cell proliferation and survival in adult rodent hippocampus. Psychopharmacology 206(2):215–222

    Article  PubMed  CAS  Google Scholar 

  • Tierney PL, Thierry AM, Glowinski J, Deniau JM, Gioanni Y (2008) Dopamine modulates temporal dynamics of feedforward inhibition in rat prefrontal cortex in vivo. Cereb Cortex 18:2251–2262

    Article  PubMed  CAS  Google Scholar 

  • Vandergriff J, Huff K, Bond A, Lodge D (2001) Potentiation of responses to AMPA on central neurones by LY392098 and LY404187 in vivo. Neuropharmacol 40:1003–1009

    Article  CAS  Google Scholar 

  • Venkatakrishnan K, Tseng E, Nelson FR, Rollema H, French JL, Kaplan IV, Horner WE, Gibbs MA (2007) Central nervous system pharmacokinetics of the Mdr1 P-glycoprotein substrate CP-615,003: intersite differences and implications for human receptor occupancy projections from cerebrospinal fluid exposures. Drug Metab Dispos 35:1341–1349

    Article  PubMed  CAS  Google Scholar 

  • Wählby U, Jonsson EN, Karlsson MO (2001) Assessment of actual significance levels for covariate effects in NONMEM. J Pharmacokinet Pharmacodyn 28(3):231–251

    Article  PubMed  Google Scholar 

  • Watson J, Wright S, Lucas A, Clarke KL, Viggers J, Cheetham S, Jeffrey P, Porter R, Read KD (2009) Receptor occupancy and brain free fraction. Drug Metab Dispos 37:753–760

    Article  PubMed  CAS  Google Scholar 

  • Wezenberg E, Verkes RJ, Ruigt GSF, Hulstijn W, Sabbe BGC (2007) Acute effects of the ampakine farampator on memory and information processing in healthy elderly volunteers. Neuropsychopharmacol 32:1272–1283

    Article  CAS  Google Scholar 

  • Woolley ML, Waters KA, Gartlon JE, Lacroix LP, Jennings C, Shaughnessy F, Ong A, Pemberton DJ, Harries MH, Southam E, Jones DN, Dawson LA (2009) Evaluation of the pro-cognitive effects of the AMPA receptor positive modulator, 5-(1-piperidinylcarbonyl)-2,1,3-benzoxadiazole (CX691), in the rat. Psychopharmacology 202(1–3):343–354

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Schering-Plough Corporation, now Merck (Whitehouse Station, NJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Bursi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bursi, R., Erdemli, G., Campbell, R. et al. Translational PK–PD modelling of molecular target modulation for the AMPA receptor positive allosteric modulator Org 26576. Psychopharmacology 218, 713–724 (2011). https://doi.org/10.1007/s00213-011-2365-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2365-6

Keywords

Navigation