Skip to main content

Cannabidiol potentiates Δ9-tetrahydrocannabinol (THC) behavioural effects and alters THC pharmacokinetics during acute and chronic treatment in adolescent rats

Abstract

Rationale

The interactions between Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) during chronic treatment, and at equivalent doses, are not well characterised in animal models.

Objectives

The aim of this study is to examine whether the behavioural effects of THC, and blood and brain THC levels are affected by pre-treatment with equivalent CBD doses.

Methods

Adolescent rats were treated with ascending daily THC doses over 21 days (1 then 3 then 10 mg/kg). Some rats were given equivalent CBD doses 20 min prior to each THC injection to allow examination of possible antagonistic effects of CBD. During dosing, rats were assessed for THC and CBD/THC effects on anxiety-like behaviour, social interaction and place conditioning. At the end of dosing, blood and brain levels of THC, and CB1 and 5-HT1A receptor binding were assessed.

Results

CBD potentiated an inhibition of body weight gain caused by chronic THC, and mildly augmented the anxiogenic effects, locomotor suppressant effects and decreased social interaction seen with THC. A trend towards place preference was observed in adolescent rats given CBD/THC but not those given THC alone. With both acute and chronic administration, CBD pre-treatment potentiated blood and brain THC levels, and lowered levels of THC metabolites (THC-COOH and 11-OH-THC). CBD co-administration did not alter the THC-induced decreases in CB1 receptor binding and no drug effects on 5-HT1A receptor binding were observed.

Conclusions

CBD can potentiate the psychoactive and physiological effects of THC in rats, most likely by delaying the metabolism and elimination of THC through an action on the CYP450 enzymes that metabolise both drugs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alves FH, Crestani CC, Gomes FV, Guimaraes FS, Correa FM, Resstel LB (2010) Cannabidiol injected into the bed nucleus of the stria terminalis modulates baroreflex activity through 5-HT1A receptors. Pharmacol Res 62:228–236

    PubMed  Article  CAS  Google Scholar 

  2. Bhattacharyya S, Morrison PD, Fusar-Poli P, Martin-Santos R, Borgwardt S, Winton-Brown T, Nosarti C, O'Connel CM, Seal M, Allen P, Mehta MA, Stone JM, Tunstall N, Giampietro V, Kapur S, Murray RM, Zuardi AW, Crippa JA, Atkan Z, McGuire PK (2010) Opposite effect of delta9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacology 35:764–774

    PubMed  Article  CAS  Google Scholar 

  3. Bornheim LM, Correia MA (1989) Effect of cannabidiol on cytochrome P-450 isoenzymes. Biochem Pharmacol 38:2789–2794

    PubMed  Article  CAS  Google Scholar 

  4. Bornheim LM, Correia MA (1990) Selective inactivation of mouse liver cytochrome P-450IIIA by cannabidiol. Mol Pharmacol 38:319–326

    PubMed  CAS  Google Scholar 

  5. Bornheim LM, Correia MA (1991) Purification and characterization of the major hepatic cannabinoid hydroxylase in the mouse: a possible member of the cytochrome P-450IIC subfamily. Mol Pharmacol 40:228–234

    PubMed  CAS  Google Scholar 

  6. Bornheim LM, Kim K, Beatrice J, Perotti Y, Benet L (1995) Effect of cannabidiol pretreatment on the kinetic of tetrahydrocannabinol metabolites in mouse brain. Drug Metab Dispos 23:825–831

    PubMed  CAS  Google Scholar 

  7. Breivogel CS, Childers SR, Deadwyler SA, Hampson RE, Vogt LJ, Sim-Selley LJ (1999) Chronic delta9-tetrahydrocannabinol treatment produces a time-dependent loss of cannabinoid receptors and cannabinoid receptor-activated G proteins in rat brain. J Neurochem 73:2447–2459

    PubMed  Article  CAS  Google Scholar 

  8. Campos AC, Guimaraes FS (2008) Involvement of 5HT1A receptors in the anxiolytic-like effects of cannabidiol injected into the dorsolateral periaqueductal gray of rats. Psychopharmacology (Berl) 199:223–230

    Article  CAS  Google Scholar 

  9. Dalton GD, Smith FL, Smith PA, Dewey WL (2005) Chronic delta9-tetrahydrocannabinol treatment produces antinociceptive tolerance in mice without altering protein kinase A activity in mouse brain and spinal cord. Biochem Pharmacol 70:152–160

    PubMed  Article  CAS  Google Scholar 

  10. Deveaux V, Cadoudal T, Ichigotani Y, Teixeira-Clerc F, Louvet A, Manin S, Nhieu JT, Belot MP, Zimmer A, Even P, Cani PD, Knauf C, Burcelin R, Bertola A, Le Marchand-Brustel Y, Gual P, Mallat A, Lotersztajn S (2009) Cannabinoid CB2 receptor potentiates obesity-associated inflammation, insulin resistance and hepatic steatosis. PLoS ONE 4:e5844

    PubMed  Article  Google Scholar 

  11. Di Forti M, Morgan C, Dazzan P, Pariante C, Mondelli V, Marques TR, Handley R, Luzi S, Russo M, Paparelli A, Butt A, Stilo SA, Wiffen B, Powell J, Murray RM (2009) High-potency cannabis and the risk of psychosis. Br J Psychiatry 195:488–491

    PubMed  Article  Google Scholar 

  12. Fernandes M, Warning N, Christ W, Hill R (1973) Interactions of several cannabinoids with the hepatic drug metabolizing system. Biochem Pharmacol 22:2981–2987

    PubMed  Article  CAS  Google Scholar 

  13. Fernandes M, Schabarek A, Cooper H, Hill R (1974) Modification of delta9-THC actions by cannabinol and cannabidiol in the rat. Psychopharmacologia 38:329–338

    PubMed  Article  CAS  Google Scholar 

  14. Genn RF, Tucci S, Marco EM, Viveros MP, File SE (2004) Unconditioned and conditioned anxiogenic effects of the cannabinoid receptor agonist CP 55,940 in the social interaction test. Pharmacol Biochem Behav 77:567–573

    PubMed  Article  CAS  Google Scholar 

  15. Gomes FV, Resstel LB, Guimaraes FS (2011) The anxiolytic-like effects of cannabidiol injected into the bed nucleus of the stria terminalis are mediated by 5-HT1A receptors. Psychopharmacology (Berl) 213:465–473

    Article  CAS  Google Scholar 

  16. Guilani D, Ferrari F, Ottani A (2000) The cannabinoid agonist HU 210 modifies rat behavioural responses to novelty and stress. Pharmacol Res 41:47–53

    Google Scholar 

  17. Guimaraes FS, Chiaretti TM, Graeff FG, Zuardi AW (1990) Antianxiety effect of cannabidiol in the elevated plus-maze. Psychopharmacology (Berl) 100:558–559

    Article  CAS  Google Scholar 

  18. Gunasekaran N, Long L, Arnold JC, McGregor IS (2009) Reintoxication: the release of fat-stored delta-9-tetrahydrocannabinol (THC) into blood is enhanced by food deprivation or ACTH exposure. British Journal of Pharmacology 158:1330–1337

    PubMed  Article  CAS  Google Scholar 

  19. Han M, Huang XF, du Bois TM, Deng C (2009) The effects of antipsychotic drugs administration on 5-HT1A receptor expression in the limbic system of the rat brain. Neuroscience 164:1754–1763

    PubMed  Article  CAS  Google Scholar 

  20. Hayakawa K, Mishima K, Nozako M, Ogata A, Hazekawa M, Liu A-X, Fujioka M, Abe K, Hasebe N, Egashira N, Iwasaki K, Fujiwara M (2007) Repeated treatment with cannabidiol but not delta9-tetrahydrocannabinol has a neuroprotective effect without the development of tolerance. Neuropharmacology 52:1079–1087

    PubMed  Article  CAS  Google Scholar 

  21. Hayakawa K, Mishima K, Hazekawa M, Sano K, Irie K, Orito K, Egawa T, Kitamura Y, Uchida N, Nishimura R, Egashira N, Iwasaki K, Fujiwara M (2008) Cannabidiol potentiates pharmacological effects of delta9-tetrahydrocannabinol via a CB1 receptor-dependent mechanism. Brain Res 1188:157–164

    PubMed  Article  CAS  Google Scholar 

  22. Hollister LE, Gillespie H (1975) Interactions in man of delta9-tetrahydrocannabinol, H-cannabinol and cannabidiol. Clin Pharmacol 18:329–338

    Google Scholar 

  23. Ignatowska-Jankowska B, Jankowski MM, Swiergiel AH (2011) Cannabidiol decreases body weight gain in rats: involvement of CB2 receptors. Neurosci Lett 490:82–84

    PubMed  Article  CAS  Google Scholar 

  24. Izzo AA, Borrelli F, Capasso R, Di Marzo V, Mechoulam R (2009) Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol Sci 30:515–527

    PubMed  Article  CAS  Google Scholar 

  25. Jones G, Pertwee RG (1972) A metabolic interaction in vivo between cannabidiol and 1-tetrahydrocannabinol. Br J Pharmacol 45:375–377

    PubMed  CAS  Google Scholar 

  26. Karniol IG, Carlini EA (1973) Pharmacological interaction between cannabidiol and delta9-tetrahydrocannabinol. Psychopharmacologia 33:53–70

    PubMed  Article  CAS  Google Scholar 

  27. Karniol IG, Shirakawa I, Kasinaki N, Carlini EA (1974) Cannabidiol interferes with the effects of delta9-tetrahydrocannabinol in man. Eur J Pharmacol 28:172–177

    PubMed  Article  CAS  Google Scholar 

  28. Karschner EL, Darwin WD, McMahon RP, Liu F, Wright S, Goodwin RS, Huestis MA (2011a) Subjective and physiological effects after controlled Sativex and oral THC administration. Clin Pharmacol Ther 89:400–407

    PubMed  Article  CAS  Google Scholar 

  29. Karschner EL, Darwin WD, Goodwin RS, Wright S, Huestis MA (2011b) Plasma cannabinoid pharmacokinetics following controlled oral delta9-tetrahydrocannabinol and oromucosal cannabis extract administration. Clin Chem 57:66–75

    PubMed  Article  CAS  Google Scholar 

  30. Kmietowicz Z (2010) Cannabis based drug is licensed for spasticity in patients with MS. BMJ 340:c3363

    PubMed  Article  Google Scholar 

  31. Long LE, Chesworth R, Huang XF, McGregor IS, Arnold JC, Karl T (2010) A behavioural comparison of acute and chronic delta9-tetrahydrocannabinol and cannabidiol in C57BL/6JArc mice. Int J Neuropsychopharmacol 13:861–876

    PubMed  Article  CAS  Google Scholar 

  32. Mallet PE, Beninger PJ (1998) Delta9-tetrahydrocannabinol, but not the endogenous cannabinoid receptor ligand anandamide, produces conditioned place avoidance. Life Sci 62:2431–2434

    PubMed  Article  CAS  Google Scholar 

  33. Malone DT, Jongejan D, Taylor DA (2009) Cannabidiol reverses the reduction in social interaction produced by low dose of delta9-tetrahydrocannabinol in rats. Pharmacol Biochem Behav 93:91–96

    PubMed  Article  CAS  Google Scholar 

  34. McGregor IS, Issakidis CN, Prior G (1996) Aversive effects of the synthetic cannabinoid CP 55,940 in rats. Pharmacol Biochem Behav 53:657–664

    PubMed  Article  CAS  Google Scholar 

  35. McLaren J, Swift W, Dillon P, Allsop S (2008) Cannabis potency and contamination: a review of the literature. Addiction 103:1100–1109

    PubMed  Article  Google Scholar 

  36. Mechoulam R (1986) The pharmacohistory of Cannabis sativa. In: Mechoulam R (ed) Cannabinoids as therapeutic agents. CRC, Boca Raton, p 19

    Google Scholar 

  37. Mishima K, Hayakawa K, Abe K, Ikeda T, Egashira N, Iwasaki K, Fujiwara M (2005) Cannabidiol prevents cerebral infarction via a serotonergic 5-hydroxytryptamine1A receptor-dependent mechanism. Stroke 36:1071–1076

    Article  CAS  Google Scholar 

  38. Moreira FA, Aguiar DC, Guimaraes FS (2006) Anxiolytic-like effect of cannabidiol in the rat Vogel conflict test. Prog Neuropsychopharmacol Biol Psychiatry 30:1466–1471

    PubMed  Article  CAS  Google Scholar 

  39. Morgan CJ, Curran HV (2008) Effects of cannabidiol on schizophrenia-like symptoms in people who use cannabis. Br J Psychiatry 192:306–307

    PubMed  Article  Google Scholar 

  40. Morgan CJ, Freeman TP, Schafer GL, Curran HV (2010a) Cannabidiol attenuates the appetitive effects of delta(9)-tetrahydrocannabinol in humans smoking their chosen cannabis. Neuropsychopharmacology 35:1879–1885

    PubMed  Article  CAS  Google Scholar 

  41. Morgan CJ, Schafer G, Freeman TP, Curran HV (2010b) Impact of cannabidiol on the acute memory and psychotomimetic effects of smoked cannabis: naturalistic study. Br J Psychiatry 197:285–290

    PubMed  Article  Google Scholar 

  42. Nadulski T, Pragst F, Weinberg G, Roser P, Schnelle M, Fronk EM, Stadelmann AM (2005) Randomized, double-blind, placebo-controlled study about the effects of cannabidiol (CBD) on the pharmacokinetics of delta9-tetrahydrocannabinol (THC) after oral application of THC verses standardized cannabis extract. Ther Drug Monit 27:799–810

    PubMed  Article  CAS  Google Scholar 

  43. Onaivi ES, Green MR, Martin BR (1990) Pharmacological effects of cannabinoids in the elevated plus-maze. J Pharmacol Exp Ther 253:1002–1009

    PubMed  CAS  Google Scholar 

  44. Oviedo A, Glowa J, Herkenham M (1993) Chronic cannabinoid administration alters cannabinoid receptor binding in rat brain: a quantitative autoradiographic study. Brain Res 616:293–302

    PubMed  Article  CAS  Google Scholar 

  45. Parker LA, Burton P, Sorge RE, Yakiwchuk C, Mechoulam R (2004) Effect of low doses of delta9-tetrahydrocannabinol and cannabidiol on the extinction of cocaine-induced and amphetamine-induced conditioned place preference learning in rats. Psychopharmacology (Berl) 175:360–366

    Article  CAS  Google Scholar 

  46. Pertwee RG (2004) The pharmacology and therapeutic potential of cannabidiol. In: Marzo VD (ed) Cannabinoids. Kluwer/Plenum, New York, p 51

    Google Scholar 

  47. Pertwee RG (2008) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol 153:199–215

    PubMed  Article  CAS  Google Scholar 

  48. Pertwee RG, Thomas A (2007) Therapeutic applications for agents that act at CB1 and CB2 receptor. In: Reggio PH (ed) The cannabinoid receptors. Humana, Totowa

    Google Scholar 

  49. Potter DJ, Clark P, Brown MB (2008) Potency of delta 9-THC and other cannabinoids in cannabis in England in 2005: implications for psychoactivity and pharmacology. J Forensic Sci 53:90–94

    PubMed  Article  Google Scholar 

  50. Quinn HR, Matsumoto I, Callaghan PD, Long LE, Arnold JC, Gunasekaran N, Thompson MR, Dawson B, Mallet PE, Kashem MA, Matsuda-Matsumoto H, Iwazaki T, McGregor IS (2008) Adolescent rats find repeated delta(9)-THC less aversive than adult rats but display greater residual cognitive deficits and changes in hippocampal protein expression following exposure. Neuropsychopharmacology 33:1113–1126

    PubMed  Article  Google Scholar 

  51. Reid MJ, Bornheim LM (2001) Cannabinoid-induced alterations in brain disposition of drugs of abuse. Biochem Pharmacol 61:1357–1367

    PubMed  Article  CAS  Google Scholar 

  52. Resstel LB, Tavares RF, Lisboa SF, Joca SR, Correa FM, Guimaraes FS (2009) 5-HT1A receptors are involved in the cannabidiol-induced attenuation of behavioural and cardiovascular responses to acute restraint stress in rats. Br J Pharmacol 156:181–188

    PubMed  Article  CAS  Google Scholar 

  53. Robson P (2005) Human studies of cannabinoids and medicinal cannabis. In: Pertwee RG (ed) Cannabinoids. Handbook of experimental pharmacology. Springer, Heidelberg, p 37

    Google Scholar 

  54. Russo E, Guy GW (2006) A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med Hypotheses 66:234–246

    PubMed  Article  CAS  Google Scholar 

  55. Sjoden PO, Jarbe TU, Henriksson BG (1973) Influence of tetrahydrocannabinols (delta8-THC and delta9-THC) on body weight, food, and water intake in rats. Pharmacol Biochem Behav 1:395–399

    PubMed  Article  CAS  Google Scholar 

  56. South T, Huang XF (2008) Temporal and site-specific brain alterations in CB1 receptor binding in high fat diet-induced obesity in C57Bl/6 mice. J Neuroendocrinol 20:1288–1294

    PubMed  Article  CAS  Google Scholar 

  57. Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24:417–463

    PubMed  Article  CAS  Google Scholar 

  58. Teixeira D, Pestana D, Faria A, Calhau C, Azevedo I, Monteiro R (2010) Modulation of adipocyte biology by delta(9)-tetrahydrocannabinol. Obesity (Silver Spring) 18:2077–2085

    Article  Google Scholar 

  59. Thomas A, Baillie GL, Phillips AM, Razdan RK, Ross RA, Pertwee RG (2007) Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br J Pharmacol 150:613–623

    PubMed  Article  CAS  Google Scholar 

  60. Vann RE, Gamage TF, Warner JA, Marshall EM, Taylor NL, Martin BR, Wiley JL (2008) Divergent effects of cannabidiol on the discriminative stimulus and place conditioning effects of delta(9)-tetrahydrocannabinol. Drug Alcohol Depend 94:191–198

    PubMed  Article  CAS  Google Scholar 

  61. Varvel SA, Wiley JL, Yang R, Bridgen DT, Long K, Lichtman AH, Martin BR (2006) Interactions between THC and cannabidiol in mouse models of cannabinoid activity. Psychopharmacology (Berl) 186:226–234

    Article  CAS  Google Scholar 

  62. Zanelati TV, Biojone C, Moreira FA, Guimaraes FS, Joca SR (2010) Antidepressant-like effects of cannabidiol in mice: possible involvement of 5-HT1A receptors. Br J Pharmacol 159:122–128

    PubMed  Article  CAS  Google Scholar 

  63. Zavitsanou K, Wang H, Dalton VS, Nguyen V (2010) Cannabinoid administration increases 5HT1A receptor binding and mRNA expression in the hippocampus of adult but not adolescent rats. Neuroscience 169:315–324

    PubMed  Article  CAS  Google Scholar 

  64. Zuardi AW, Finkelfarb E, Bueno OF, Musty RE, Karniol IG (1981) Characteristics of the stimulus produced by the mixture of cannabidiol with delta9-tetrahydrocannabinol. Arch Int Pharmacodyn Thér 249:137–146

    PubMed  CAS  Google Scholar 

  65. Zuardi AW, Shirakawa I, Finkelfarb E, Karniol IG (1982) Action of cannabidiol on the anxiety and other effects produced by delta9-THC in normal subjects. Psychopharmacology (Berl) 76:245–250

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by research grants from the Australian Research Council (ISM) and National Health and Medical Research Council (TK, ISM and JCA).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Iain S. McGregor.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Klein, C., Karanges, E., Spiro, A. et al. Cannabidiol potentiates Δ9-tetrahydrocannabinol (THC) behavioural effects and alters THC pharmacokinetics during acute and chronic treatment in adolescent rats. Psychopharmacology 218, 443–457 (2011). https://doi.org/10.1007/s00213-011-2342-0

Download citation

Keywords

  • THC
  • Cannabidiol
  • Cannabis
  • Adolescent
  • Anxiety
  • Reward
  • Pharmacokinetics