Abstract
Rationale
Depression may be associated with altered plasticity of the nervous system. The importance of neurotrophic factor levels is strongly suggested, and the neuronal-related family is extensively studied with respect to glial-derived one.
Objectives
Aimed to contribute to the study of nervous plasticity modulation as therapeutical target in mood disorders, the role of the glial-derived factor artemin (ARTN) in depression and in the pharmacodynamics of the antidepressant and trophic compound acetyl-l-carnitine (ALCAR) was evaluated.
Methods
Male mice were treated with 100 mg kg−1 ALCAR daily for 7 days; 0.6 μg/mouse ARTN was acutely injected intracerebroventricularly. Gene knockdown of ARTN and GDNF family receptor alpha (GFRalpha3) was obtained by oligonucleotide antisense strategy. The forced swimming test was performed to evaluate antidepressant-like effects.
Results
Repeated ALCAR administration increased ARTN levels in spinal cord, hippocampus, and prefrontal cortex. No modulatory effect was detected on BDNF and glial cell line-derived neutrotrophic factor (GDNF). ARTN, 30 min after administration, showed a dose-dependent antidepressant-like effect. ALCAR needed a 7-day treatment to reach a comparable effect; nevertheless, both substances were able to induce a phosphorylation of the GDNF family receptor Ret. A decrease of the free ARTN level by a specific ARTN antibody impaired the antidepressant-like effect of acute ARTN and repeated ALCAR. Gene knockdown of ARTN or, alternatively, of its receptor GFRalpha3 fully prevented ALCAR effectiveness.
Conclusions
A mechanism for the antidepressant property of ALCAR is proposed, and the novelty of the possible role of ARTN in depression is suggested.
Similar content being viewed by others
References
Altar CA (1999) Neurotrophins and depression. Trends Pharmacol Sci 20:59–61
Alves E, Binienda Z, Carvalho F, Alves CJ, Fernandes E, de Lourdes BM, Tavares MA, Summavielle T (2009) Acetyl-L-carnitine provides effective in vivo neuroprotection over 3,4-methylenedioximethamphetamine-induced mitochondrial neurotoxicity in the adolescent rat brain. Neuroscience 158:514–523
Andres R, Forgie A, Wyatt S, Chen Q, de Sauvage FJ, Davies AM (2001) Multiple effects of artemin on sympathetic neurone generation, survival and growth. Development 128:3685–3695
Baloh RH, Tansey MG, Lampe PA, Fahrner TJ, Enomoto H, Simburger KS et al (1998) Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFR[alpha]3-RET receptor complex. Neuron 21:1291–1302
Bella R, Biondi R, Raffaele R, Pennisi G (1990) Effect of acetyl-L-carnitine on geriatric patients suffering from dysthymic disorders. Int J Clin Pharmacol Res 10:355–360
Bespalov MM, Saarma M (2007) GDNF family receptor complexes are emerging drug targets. Trends Pharmacol Sci 28:68–74
Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, John Mann J, Arango V (2009) Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 34:2376–2389
Bremner JD, Krystal JH, Southwick SM, Charney DS (1995) Functional neuroanatomical correlates of the effects of stress on memory. J Trauma Stress 8:527–553
Castren E (2004) Neurotrophic effects of antidepressant drugs. Curr Opin Pharmacol 4:58–64
Castrèn E, Voikar V, Rantamaki T (2007) Role of neurotrophic factors in depression. Curr Opin Pharmacol 7:18–21
Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 50:260–265
Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP (2002) Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 12:386–394
De Simone C, Catania S, Trinchieri V, Tzantzoglou S, Calvani M, Bagiella E (1988) Amelioration of the depression of HIV-infected subjects with l-acetyl-carnitine therapy. J Drug Dev 1:163–166
Detke MJ, Johnson J, Lucki I (1997) Acute and chronic antidepressant drug treatment in the rat forced swimming test model of depression. Exp Clin Psychopharmacol 5:107–112
Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127
Eisch AJ, Bolanos CA, De Wit J, Simonak RD, Pudiak CM, Barrot M, Verhaagen J, Nestler EJ (2003) Brain-derived neurotrophic factor in the ventral midbrain–nucleus accumbens pathway: a role in depression. Biol Psychiatry 54:994–1005
Fariello RG, Ferraro TN, Golden GT, Demattei M (1988) Systemic acetyl-carnitine elevates nigral levels of glutathione and GABA. Life Sci 43:289–292
Foreman PJ, Perez-Polo JR, Angelucci L, Ramacci MT, Taglialatela G (1995) Effects of acetyl-L-carnitine treatment and stress exposure on the nerve growth factor receptor (p75NGFR) mRNA level in the central nervous system of aged rats. Prog Neuropsychopharmacol Biol Psychiatry 19:117–133
Fuchs E, Czeh B, Kole MHP, Michaelis T, Lucassen PJ (2004) Alterations of neuroplasticity in depression: the hippocampus and beyond. Eur Neuropsychopharmacol 14:S481–S490
Galeotti N, Bartolini A, Ghelardini C (2003) The phospholipase C-IP3 pathway is involved in muscarinic antinociception. Neuropsychopharmacology 28:888–897
Garzya G, Corallo D, Fiore A, Lecciso G, Petrelli G, Zotti C (1990) Evaluation of the effects of L-acetylcarnitine on senile patients suffering from depression. Drugs Exp Clin Res 16:101–106
Gecele M, Francesetti G, Meluzzi A (1991) Acetyl-L-carnitine in aged subjects with major depression: clinical efficacy and effects on the circadian rhythm of cortisol. Dementia 2:333–337
Guerrini G, Costanzo A, Ciciani G, Bruni F, Selleri S, Costagli C, Besnard F, Costa B, Martini C, De Siena G, Malmberg-Aiello P (2006) Benzodiazepine receptor ligands. 8: synthesis and pharmacological evaluation of new pyrazolo[5,1-c] [1,2,4]benzotriazine 5-oxide 3- and 8-disubstituted: high affinity ligands endowed with inverse-agonist pharmacological efficacy. Bioorg Med Chem 14:758–775
Imperato A, Ramacci MT, Angelucci L (1989) Acetyl-L-carnitine enhances acetylcholine release in the striatum and hippocampus of awake freely moving rats. Neurosci Lett 107:251–255
Inano A, Sai Y, Nikaido H, Hasimoto N, Asano M, Tsuji A, Tamai I (2003) Acetyl-L-carnitine permeability across the blood–brain barrier and involvement of carnitine transporter OCTN2. Biopharm Drug Dispos 24:357–365
Jeong DG, Park WK, Park S (2008) Artemin activates axonal growth via SFK and ERK-dependent signalling pathways in mature dorsal root ganglia neurons. Cell Biochem Funct 26:210–220
Kidd PM (2008) Alzheimer’s disease, amnestic mild cognitive impairment, and age-associated memory impairment: current understanding and progress toward integrative prevention. Altern Med Rev 13:85–115
Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci USA 96:5768–5773
Le Hir H, Colucci-DAmato LG, Charlet-Berguerand N, Plouin PF, Bertagna X, de Franciscis V, Thermes C (2000) High levels of tyrosine phosphorylated proto-ret in sporadic pheochromocytomas. Cancer Res 60:1365–1370
Lopez-Rodriguez F, Kim J, Poland RE (2004) Total sleep deprivation decreases immobility in the forced-swim test. Neuropsychopharmacology 29:1105–1111
Manfridi A, Forloni GL, Arrigoni-Martelli E, Mancia M (1992) Culture of dorsal root ganglion neurons from aged rats: effects of acetyl-L-carnitine and NGF. Int J Dev Neurosci 10:321–329
Mansour HH (2006) Protective role of carnitine ester against radiation-induced oxidative stress in rats. Pharmacol Res 54:165–171
Michel TM, Frangou S, Camara S, Thiemeyer D, Jecel J, Tatschner T, Zoechling R, Grunblatt E (2008) Altered glial cell line-derived neurotrophic factor (GDNF) concentrations in the brain of patients with depressive disorder: a comparative post-mortem study. Eur Psychiatry 23:413–420
Nishino J, Mochida K, Ohfuji Y, Shimazaki T, Meno C, Ohishi S et al (1999) GFR[alpha]3, a component of the artemin receptor is required for migration and survival of the superior cervical ganglion. Neuron 23:725–736
Otsuki K, Uchida S, Watanuki T, Wakabayashi Y, Fujimoto M, Matsubara T, Funato H, Watanabe Y (2008) Altered expression of neurotrophic factors in patients with major depression. J Psychiatr Res 42:1145–1153
Pettegrew JW, Levine J, McClure RJ (2000) Acetyl-L-carnitine physical-chemical, metabolic, and therapeutic properties: relevance for its mode of action in Alzheimer’s disease and geriatric depression. Mol Psychiatry 5:616–632
Pettegrew JW, Levine J, Gershon S, Stanley JA, Servan-Schreiber D, Panchalingam K, McClure RJ (2002) 31P-MRS study of acetyl-L-carnitine treatment in geriatric depression: preliminary results. Bipolar Disord 4:61–66
Piovesan P, Pacifici L, Taglialatela G, Ramacci MT, Angelucci L (1994) Acetyl-L-carnitine treatment increases choline acetyltransferase activity and NGF levels in the CNS of adult rats following total fimbria-fornix transection. Brain Res 633:77–82
Porsolt RD, Bertin A, Jalfre M (1977) Behavioural despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Thér 229:327–336
Quartu M, Serra MP, Manca A, Mascia F, FollesA P, Del Fiacco M (2005) Neurturin, persephin, and artemin in the human pre- and full-term newborn and adult hippocampus and fascia dentate. Brain Res 1041:157–166
Rajkowska G, Miguel-Hidalgo JJ (2007) Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 6:219–233
Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY et al (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45:1085–1098
Rajkowska G, Halaris A, Selemon LD (2001) Reductions on neuronal and glial density and characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry 49:741–752
Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, Agerman K, Haapasalo A, Nawa H, Aloyz R et al (2003) Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 23:349–357
Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809
Scafidi S, Fiskum G, Lindauer SL, Bamford P, Shi D, Hopkins I, McKenna MC (2010) Metabolism of acetyl-L-carnitine for energy and neurotransmitter synthesis in the immature rat brain. J Neurochem 114:820–831
Sheline YI, Sanghavi M, Mintun MA, Gado MH (1999) Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci 19:5034–5043
Sheline YI, Mittler BL, Mintun MA (2002) The hippocampus and depression. Eur Psychiatry 17:300–305
Strelau J, Unsicker K (1999) GDNF family members and their receptors: expression and functions in two oligodendroglial cell lines representing distinct stages of oligodendroglial development. Glia 26:291–330
Stromberg I, Bjorklund L, Johansson M, Tomac A, Collins F, Olson L et al (1993) Glial cell line-derived neurotrophic factor is expressed in the developing but not adult striatum and stimulates developing dopamine neurons in vivo. Exp Neurol 124:401–412
Taglialatela G, Angelucci L, Ramacci MT, Werrbach-Perez K, Jackson GR, Perez-Polo JR (1991) Acetyl-L-carnitine enhances the response of PC12 cells to nerve growth factor. Brain Res Dev Brain Res 59:221–230
Tempesta E, Janiri L, Pirrongelli C (1985) Stereospecific effects of acetylcarnitine on the spontaneous activity of brainstem neurones and their responses to acetylcholine and serotonin. Neuropharmacology 24:43–50
Tempesta E, Casella L, Pirrongelli C, Janiri L, Calvani M, Ancona L (1987) L-acetylcarnitine in depressed elderly subjects. A cross-over study vs placebo. Drug Exp Clin Res 13:417–423
Tolu P, Masi F, Leggio B, Scheggi S, Tagliamonte A, De Montis MG, Gambarana C (2002) Effects of long-term acetyl-L-carnitine administration in rats: I. increased dopamine output in mesocorticolimbic areas and protection toward acute stress exposure. Neuropsychopharmacol 27:410–420
Villardita C, Smini P, Vecchio I (1984) L-Acetylcarnitine in depressed and elderly patients. Eur Rev Med Pharmacol 62:341–344
Virmani MA, Biselli R, Spadoni A, Rossi S, Corsico N, Calvani M, Fattorossi A, De Simone C, Arrigoni-Martelli E (1995) Protective actions of L-carnitine and acetyl-L-carnitine on the neurotoxicity evoked by mitochondrial uncoupling or inhibitors. Pharmacol Res 32:383–389
Vivoli E, Di Cesare ML, Salvicchi A, Bartolini A, Koverech A, Nicolai R, Benatti P, Ghelardini C (2010) Acetyl-l-carnitine increases artemin level and prevents neurotrophic factor alterations during neuropathy. Neuroscience 167:1168–1174
Warnecke A, Scheper V, Buhr I, Wenzel GI, Wissel K, Paasche G, Berkingali N, Jørgensen JR, Lenarz T, Stöver T (2010) Artemin improves survival of spiral ganglion neurons in vivo and in vitro. Neuroreport 21:517–521
Willner P (1984) The validity of animal models of depression. Psychopharmacology 83:1–16
Zanardi R, Smeraldi E (2006) A double-blind, randomised, controlled clinical trial of acetyl-L-carnitine vs. amisulpride in the treatment of dysthymia. Eur Neuropsychopharmacol 16:281–287
Zhang X, Zhang Z, Xie C, Xi G, Zhou H, Zhang Y et al (2008) Effect of treatment on serum glial cell line-derived neurotrophic factor in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 32:886–890
Zihlmann KB, Ducray AD, Schaller B, Huber AW, Krebs SH, Andres RH et al (2005) The GDNF family members neurturin, artemin and persephin promote the morphological differentiation of cultured ventral mesencephalic dopaminergic neurons. Brain Res Bull 68:42–53
Acknowledgments
The authors declare that this work was funded by the Italian Ministry of Instruction, University and Research and by Sigma-Tau Industrie Farmaceutiche Riunite.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Di Cesare Mannelli, L., Vivoli, E., Salvicchi, A. et al. Antidepressant-like effect of artemin in mice: a mechanism for acetyl-l-carnitine activity on depression. Psychopharmacology 218, 347–356 (2011). https://doi.org/10.1007/s00213-011-2326-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00213-011-2326-0