Skip to main content
Log in

Dipyridamole monotherapy in schizophrenia

Pilot of a novel treatment approach by modulation of purinergic signaling

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

Emerging data indicate the neuromodulator adenosine may play a role in the therapeutics of schizophrenia. Adenosine A2A receptor stimulation exerts a functional antagonism at postsynaptic D2 receptors. Data from animal models relevant to schizophrenia support a therapeutic effect of modulating adenosinergic transmission in the ventral striatum. One previous clinical trial showed superiority of adjunctive dipyridamole, an adenosine reuptake inhibitor, compared to placebo in ameliorating positive symptoms in schizophrenia patients.

Objectives

The aim of this study was to examine the effects of dipyridamole monotherapy of 200 mg/day on positive and negative symptoms, with the goal of determining dosing for future adjunctive studies in schizophrenia.

Methods

Twenty symptomatic schizophrenia participants were randomized to a 6-week double-blind trial comparing olanzapine (20 mg/day) to dipyridamole monotherapy (200 mg/day). Thirteen participants completed the treatment phase (eight on dipyridamole; five on olanzapine).

Results

The olanzapine group showed a trend (p = 0.08) for superiority on BPRS total scores (mean ± SD: total BPRS score decreasing from 36.8 ± 2.3 at week 1, to 33.2 ± 5.5 at the end of the study). The mean total BPRS scores decreased from 36.4 ± 5.3 to 34.0 ± 7.7 in the dipyridamole group.

Conclusions

Although these pilot data do not support a significant antipsychotic effect of dipyridamole monotherapy, the results provide some evidence for examining dipyridamole (200 mg/day) as adjunct to symptomatic antipsychotic-treated schizophrenia patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akhondzadeh S et al (2000) Dipyridamole in the treatment of schizophrenia: adenosine-dopamine receptor interactions. J Clin Pharm Ther 25:131–137

    Article  PubMed  CAS  Google Scholar 

  • Akhondzadeh S et al (2005) Beneficial antipsychotic effects of allopurinol as add-on therapy for schizophrenia: a double blind, randomized and placebo controlled trial. Prog Neuropsychopharmacol Biol Psychiatry 29:253–259

    Article  PubMed  CAS  Google Scholar 

  • Andreasen NC (1984) The scale for the assessment of positive symptoms (SAPS). University of Iowa, Iowa City

    Google Scholar 

  • Boison D, et al. (2011) Adenosine hypothesis of schizophrenia — opportunities for pharmacotherapy. Neuropharmacology

  • Brunstein MG et al (2001) Therapeutic benefit of adjunctive dipyridamole in schizophrenia is probably due to adenosine–glutamate interactions. J Clin Pharm Ther 26:155–156

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1:179–186

    Article  PubMed  CAS  Google Scholar 

  • Cassady SL et al (1997) The Maryland psychatric research center scale for the characterization of involuntary movements. Psychiatry Res 70:21–37

    Article  PubMed  CAS  Google Scholar 

  • Chen JF (2003) The adenosine A(2A) receptor as an attractive target for Parkinson's disease treatment. Drug News Perspect 16:597–604

    Article  PubMed  CAS  Google Scholar 

  • Cieslak M et al (2008) Adenosine A(2A) receptors in Parkinson’s disease treatment. Purinergic Signal 4:305–312

    Article  PubMed  CAS  Google Scholar 

  • Conley RR et al (2009) The effects of galantamine on psychopathology in chronic stable schizophrenia. Clin Neuropharmacol 32:69–74

    Article  PubMed  CAS  Google Scholar 

  • Deckert J et al (2003) Up-regulation of striatal adenosine A(2A) receptors in schizophrenia. Neuroreport 14:313–316

    Article  PubMed  CAS  Google Scholar 

  • Delay J et al (1952) Utilization therpeutique psychiatrique d'une phenothiazine d'action centrale elective. Ann Méd Psychol 110:112–117

    CAS  Google Scholar 

  • Fernandes CC et al (2008) Postsynaptic action of brain-derived neurotrophic factor attenuates alpha7 nicotinic acetylcholine receptor-mediated responses in hippocampal interneurons. J Neurosci 28:5611–5618

    Article  PubMed  CAS  Google Scholar 

  • Ferre S (1997) Adenosine–dopamine interactions in the ventral striatum. Implications for the treatment of schizophrenia. Psychopharmacology (Berl) 133:107–120

    Article  CAS  Google Scholar 

  • Ferre S et al (1994) Antagonistic interaction between adenosine A2A receptors and dopamine D2 receptors in the ventral striopallidal system. Implications for the treatment of schizophrenia. Neuroscience 63:765–773

    Article  PubMed  CAS  Google Scholar 

  • First MB, Spitzer RL, Gibbon M, Williams JBW (1997) Structured Clinical Interview for DSM-IV Axis I Disorders. American Psychiatric Publishing, Inc., Arlington

    Google Scholar 

  • Fisone G et al (2004) Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci 61:857–872

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K et al (2010) Adenosine–dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 16:e18–e42

    Article  PubMed  CAS  Google Scholar 

  • Ghaleiha A et al (2011) Correlation of adenosinergic activity with superior efficacy of clozapine for treatment of chronic schizophrenia: a double blind randomised trial. Hum Psychopharmacol.

  • Goff DC et al (1995) ose-finding trial of d-cycloserine added to neuroleptics for negative symptoms in schizophrenia. Am J Psychiatry 152:1213–1215

    PubMed  CAS  Google Scholar 

  • Harvey J, Lacey MG (1997) A postsynaptic interaction between dopamine D1 and NMDA receptors promotes presynaptic inhibition in the rat nucleus accumbens via adenosine release. J Neurosci 17:5271–5280

    PubMed  CAS  Google Scholar 

  • Hauser RA, Schwarzschild MA (2005) Adenosine A2A receptor antagonists for Parkinson's disease: rationale, therapeutic potential and clinical experience. Drugs Aging 22:471–482

    Article  PubMed  CAS  Google Scholar 

  • Heffner TG et al (1989) Comparison of the behavioral effects of adenosine agonists and dopamine antagonists in mice. Psychopharmacology (Berl) 98:31–37

    Article  CAS  Google Scholar 

  • Howard R, Levy R (1992) Which factors affect treatment response in late paraphrenia? Int J Geriatr Psychiatry 19:667–672

    Article  Google Scholar 

  • Kafka SH, Corbett R (1996) Selective adenosine A2A receptor/dopamine D2 receptor interactions in animal models of schizophrenia. Eur J Pharmacol 295:147–154

    Article  PubMed  CAS  Google Scholar 

  • Kapur S et al (2000) Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 157:514–520

    Article  PubMed  CAS  Google Scholar 

  • Lara DR et al (2001) Allopurinol augmentation for poorly responsive schizophrenia. Int Clin Psychopharmacol 16:235–237

    Article  PubMed  CAS  Google Scholar 

  • Lara DR et al (2006) Involvement of adenosine in the neurobiology of schizophrenia and its therapeutic implications. Prog Neuropsychopharmacol Biol Psychiatry 30:617–629

    Article  PubMed  CAS  Google Scholar 

  • Lieberman JA et al (2005) Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 353:1209–1223

    Article  PubMed  CAS  Google Scholar 

  • MacCollin M et al (1994) Mapping of a human A2a adenosine receptor (ADORA2) to chromosome 22. Genomics 20:332–333

    Article  PubMed  CAS  Google Scholar 

  • Masino SA et al (2002) Modulation of hippocampal glutamatergic transmission by ATP is dependent on adenosine a(1) receptors. J Pharmacol Exp Ther 303:356–363

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto S et al (2005) Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry 10:79–104

    Article  PubMed  CAS  Google Scholar 

  • Okada M et al (1996) Adenosine A1 and A2 receptors modulate extracellular dopamine levels in rat striatum. Neurosci Lett 212:53–56

    Article  PubMed  CAS  Google Scholar 

  • Quarta D et al (2004) Adenosine receptor-mediated modulation of dopamine release in the nucleus accumbens depends on glutamate neurotransmission and N-methyl-d-aspartate receptor stimulation. J Neurochem 91:873–880

    Article  PubMed  CAS  Google Scholar 

  • Salimi S et al (2008) A placebo controlled study of the propentofylline added to risperidone in chronic schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 32:726–732

    Article  PubMed  CAS  Google Scholar 

  • Sills TL et al (1999) The adenosine A1 receptor agonist N 6-cyclopentyladenosine blocks the disruptive effect of phencyclidine on prepulse inhibition of the acoustic startle response in the rat. Eur J Pharmacol 369:325–329

    Article  PubMed  CAS  Google Scholar 

  • Tariq M et al (1995) Dipyridamole attenuates the development of iminodipropionitrile-induced dyskinetic abnormalities in rats. Brain Res Bull 38:31–35

    Article  PubMed  CAS  Google Scholar 

  • Torvinen M et al (2005) Adenosine A2A receptor and dopamine D3 receptor interactions: evidence of functional A2A/D3 heteromeric complexes. Mol Pharmacol 67:400–407

    Article  PubMed  CAS  Google Scholar 

  • Wetzel H et al (1998) Amisulpride versus flupentixol in schizophrenia with predominantly positive symptomatology — a double-blind controlled study comparing a selective D2-like antagonist to a mixed D1-/D2-like antagonist. The Amisulpride Study Group. Psychopharmacology (Berl) 137:223–232

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from the Stanley Medical Research Institute.

Registration at clinicaltrials.gov

This study is registered at clinicaltrials.gov.

Authors’ disclosure

The authors declare no conflict of interest in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikwunga Wonodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wonodi, I., Gopinath, H.V., Liu, J. et al. Dipyridamole monotherapy in schizophrenia. Psychopharmacology 218, 341–345 (2011). https://doi.org/10.1007/s00213-011-2315-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2315-3

Keywords

Navigation