, Volume 214, Issue 1, pp 107–120 | Cite as

Potential programming of dopaminergic circuits by early life stress

  • Ana-João Rodrigues
  • Pedro Leão
  • Miguel Carvalho
  • Osborne F. X. Almeida
  • Nuno SousaEmail author


Stress and high levels of glucocorticoids during pre- and early postnatal life seem to alter developmental programs that assure dopaminergic transmission in the mesolimbic, mesocortical, and nigrostriatal systems. The induced changes are likely to be determined by the ontogenetic state of development of these brain regions at the time of stress exposure and their stability is associated with increased lifetime susceptibility to psychiatric disorders, including drug addiction. This article is intended to serve as a starting point for future studies aimed at the attenuation or reversal of the effects of adverse early life events on dopamine-regulated behaviors.


Programming Glucocorticoids Dopamine Mesolimbic Mesocortical Nigrostriatal Tuberoinfundibular Addiction Depression Anxiety Nucleus accumbens Ventral tegmental area 







Tyrosine hydroxylase




Early life stress


Attention deficit hyperactivity disorder


Hypothalamus–pituitary–adrenal axis




Ventral tegmental area


Nucleus accumbens



The authors would like to thank the Institute for Social and Affective Neuroscience, Fundação para a Ciência e Tecnologia, and CRESCENDO (EU Integrated Project FP6-018652) for funding.


  1. Agid O, Shapira B, Zislin J, Ritsner M, Hanin B, Murad H, Troudart T, Bloch M, Heresco-Levy U, Lerer B (1999) Environment and vulnerability to major psychiatric illness: a case control study of early parental loss in major depression, bipolar disorder and schizophrenia. Mol Psychiatry 4:163–172PubMedCrossRefGoogle Scholar
  2. Alonso SJ, Navarro E, Rodriguez M (1994) Permanent dopaminergic alterations in the n. accumbens after prenatal stress. Pharmacol Biochem Behav 49:353–358PubMedCrossRefGoogle Scholar
  3. Barrot M, Marinelli M, Abrous DN, Rouge-Pont F, Le Moal M, Piazza PV (2000) The dopaminergic hyper-responsiveness of the shell of the nucleus accumbens is hormone-dependent. Eur J Neurosci 12:973–979PubMedCrossRefGoogle Scholar
  4. Batel P, Houchi H, Daoust M, Ramoz N, Naassila M, Gorwood P (2008) A haplotype of the DRD1 gene is associated with alcohol dependence. Alcohol Clin Exp Res 32:567–572PubMedCrossRefGoogle Scholar
  5. Bayer SA, Wills KV, Triarhou LC, Ghetti B (1995) Time of neuron origin and gradients of neurogenesis in midbrain dopaminergic neurons in the mouse. Exp Brain Res 105:191–199PubMedGoogle Scholar
  6. Bayer TA, Falkai P, Maier W (1999) Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the “two hit hypothesis”. J Psychiatr Res 33:543–548PubMedCrossRefGoogle Scholar
  7. Benes FM, Taylor JB, Cunningham MC (2000) Convergence and plasticity of monoaminergic systems in the medial prefrontal cortex during the postnatal period: implications for the development of psychopathology. Cereb Cortex 10:1014–1027PubMedCrossRefGoogle Scholar
  8. Berger MA, Barros VG, Sarchi MI, Tarazi FI, Antonelli MC (2002) Long-term effects of prenatal stress on dopamine and glutamate receptors in adult rat brain. Neurochem Res 27:1525–1533PubMedCrossRefGoogle Scholar
  9. Bernet CZ, Stein MB (1999) Relationship of childhood maltreatment to the onset and course of major depression in adulthood. Depress Anxiety 9:169–174PubMedCrossRefGoogle Scholar
  10. Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 191:391–431PubMedCrossRefGoogle Scholar
  11. Bjorklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202PubMedCrossRefGoogle Scholar
  12. Blanpied TA, Ehlers MD (2004) Microanatomy of dendritic spines: emerging principles of synaptic pathology in psychiatric and neurological disease. Biol Psychiatry 55:1121–1127PubMedCrossRefGoogle Scholar
  13. Blum K, Noble EP, Sheridan PJ, Montgomery A, Ritchie T, Jagadeeswaran P, Nogami H, Briggs AH, Cohn JB (1990) Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA 263:2055–2060PubMedCrossRefGoogle Scholar
  14. Bock J, Gruss M, Becker S, Braun K (2005) Experience-induced changes of dendritic spine densities in the prefrontal and sensory cortex: correlation with developmental time windows. Cereb Cortex 15:802–808PubMedCrossRefGoogle Scholar
  15. Boksa P, El-Khodor BF (2003) Birth insult interacts with stress at adulthood to alter dopaminergic function in animal models: possible implications for schizophrenia and other disorders. Neurosci Biobehav Rev 27:91–101PubMedCrossRefGoogle Scholar
  16. Bowden C, Cheetham SC, Lowther S, Katona CL, Crompton MR, Horton RW (1997) Reduced dopamine turnover in the basal ganglia of depressed suicides. Brain Res 769:135–140PubMedCrossRefGoogle Scholar
  17. Brake WG, Noel MB, Boksa P, Gratton A (1997) Influence of perinatal factors on the nucleus accumbens dopamine response to repeated stress during adulthood: an electrochemical study in the rat. Neuroscience 77:1067–1076PubMedCrossRefGoogle Scholar
  18. Brake WG, Sullivan RM, Gratton A (2000) Perinatal distress leads to lateralized medial prefrontal cortical dopamine hypofunction in adult rats. J Neurosci 20:5538–5543PubMedGoogle Scholar
  19. Brake WG, Zhang TY, Diorio J, Meaney MJ, Gratton A (2004) Influence of early postnatal rearing conditions on mesocorticolimbic dopamine and behavioural responses to psychostimulants and stressors in adult rats. Eur J Neurosci 19:1863–1874PubMedCrossRefGoogle Scholar
  20. Brown GW, Moran P (1994) Clinical and psychosocial origins of chronic depressive episodes. I: a community survey. Br J Psychiatry 165:447–456PubMedCrossRefGoogle Scholar
  21. Burke RE (2004) Ontogenic cell death in the nigrostriatal system. Cell Tissue Res 318:63–72PubMedCrossRefGoogle Scholar
  22. Caldji C, Tannenbaum B, Sharma S, Francis D, Plotsky PM, Meaney MJ (1998) Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc Natl Acad Sci USA 95:5335–5340PubMedCrossRefGoogle Scholar
  23. Cannon TD, van Erp TG, Bearden CE, Loewy R, Thompson P, Toga AW, Huttunen MO, Keshavan MS, Seidman LJ, Tsuang MT (2003) Early and late neurodevelopmental influences in the prodrome to schizophrenia: contributions of genes, environment, and their interactions. Schizophr Bull 29:653–669PubMedGoogle Scholar
  24. Carroll BJ, Curtis GC, Mendels J (1976) Cerebrospinal fluid and plasma free cortisol concentrations in depression. Psychol Med 6:235–244PubMedCrossRefGoogle Scholar
  25. Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, Taylor A, Poulton R (2002) Role of genotype in the cycle of violence in maltreated children. Science 297:851–854PubMedCrossRefGoogle Scholar
  26. Catalani A, Marinelli M, Scaccianoce S, Nicolai R, Muscolo LA, Porcu A, Koranyi L, Piazza PV, Angelucci L (1993) Progeny of mothers drinking corticosterone during lactation has lower stress-induced corticosterone secretion and better cognitive performance. Brain Res 624:209–215PubMedCrossRefGoogle Scholar
  27. Cerqueira JJ, Mailliet F, Almeida OF, Jay TM, Sousa N (2007a) The prefrontal cortex as a key target of the maladaptive response to stress. J Neurosci 27:2781–2787PubMedCrossRefGoogle Scholar
  28. Cerqueira JJ, Taipa R, Uylings HB, Almeida OF, Sousa N (2007b) Specific configuration of dendritic degeneration in pyramidal neurons of the medial prefrontal cortex induced by differing corticosteroid regimens. Cereb Cortex 17:1998–2006PubMedCrossRefGoogle Scholar
  29. Chapman DP, Whitfield CL, Felitti VJ, Dube SR, Edwards VJ, Anda RF (2004) Adverse childhood experiences and the risk of depressive disorders in adulthood. J Affect Disord 82:217–225PubMedCrossRefGoogle Scholar
  30. Choi YK, Snigdha S, Shahid M, Neill JC, Tarazi FI (2009) Subchronic effects of phencyclidine on dopamine and serotonin receptors: implications for schizophrenia. J Mol Neurosci 38:227–235PubMedCrossRefGoogle Scholar
  31. Cools AR (1991) Differential role of mineralocorticoid and glucocorticoid receptors in the genesis of dexamphetamine-induced sensitization of mesolimbic, alpha 1 adrenergic receptors in the ventral striatum. Neuroscience 43:419–428PubMedCrossRefGoogle Scholar
  32. Cools R (2006) Dopaminergic modulation of cognitive function-implications for l-DOPA treatment in Parkinson’s disease. Neurosci Biobehav Rev 30:1–23PubMedCrossRefGoogle Scholar
  33. Crow TJ (1972) A map of the rat mesencephalon for electrical self-stimulation. Brain Res 36:265–273PubMedCrossRefGoogle Scholar
  34. Dallman MF, Akana SF, Levin N, Walker CD, Bradbury MJ, Suemaru S, Scribner KS (1994) Corticosteroids and the control of function in the hypothalamo-pituitary–adrenal (HPA) axis. Ann N Y Acad Sci 746:22–31. discussion 31–22, 64–27PubMedCrossRefGoogle Scholar
  35. de Kloet ER, Rots NY, Cools AR (1996) Brain–corticosteroid hormone dialogue: slow and persistent. Cell Mol Neurobiol 16:345–356PubMedCrossRefGoogle Scholar
  36. Diana M, Pistis M, Carboni S, Gessa GL, Rossetti ZL (1993) Profound decrement of mesolimbic dopaminergic neuronal activity during ethanol withdrawal syndrome in rats: electrophysiological and biochemical evidence. Proc Natl Acad Sci USA 90:7966–7969PubMedCrossRefGoogle Scholar
  37. Diana M, Melis M, Muntoni AL, Gessa GL (1998) Mesolimbic dopaminergic decline after cannabinoid withdrawal. Proc Natl Acad Sci USA 95:10269–10273PubMedCrossRefGoogle Scholar
  38. Dias-Ferreira E, Sousa JC, Melo I, Morgado P, Mesquita AR, Cerqueira JJ, Costa RM, Sousa N (2009) Chronic stress causes frontostriatal reorganization and affects decision-making. Science 325:621–625PubMedCrossRefGoogle Scholar
  39. Dillon DG, Holmes AJ, Birk JL, Brooks N, Lyons-Ruth K, Pizzagalli DA (2009) Childhood adversity is associated with left basal ganglia dysfunction during reward anticipation in adulthood. Biol Psychiatry 66:206–213PubMedCrossRefGoogle Scholar
  40. Doherty MD, Gratton A (1992) High-speed chronoamperometric measurements of mesolimbic and nigrostriatal dopamine release associated with repeated daily stress. Brain Res 586:295–302PubMedCrossRefGoogle Scholar
  41. Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ (1999) Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet 354:2132–2133PubMedCrossRefGoogle Scholar
  42. Drury SS, Theall KP, Smyke AT, Keats BJ, Egger HL, Nelson CA, Fox NA, Marshall PJ, Zeanah CH (2010) Modification of depression by COMT val158met polymorphism in children exposed to early severe psychosocial deprivation. Child Abuse Negl 34:387–395PubMedCrossRefGoogle Scholar
  43. Dube SR, Felitti VJ, Dong M, Chapman DP, Giles WH, Anda RF (2003) Childhood abuse, neglect, and household dysfunction and the risk of illicit drug use: the adverse childhood experiences study. Pediatrics 111:564–572PubMedCrossRefGoogle Scholar
  44. Dunn AJ (1988) Stress-related changes in cerebral catecholamine and indoleamine metabolism: lack of effect of adrenalectomy and corticosterone. J Neurochem 51:406–412PubMedCrossRefGoogle Scholar
  45. Edwards VJ, Holden GW, Felitti VJ, Anda RF (2003) Relationship between multiple forms of childhood maltreatment and adult mental health in community respondents: results from the adverse childhood experiences study. Am J Psychiatry 160:1453–1460PubMedCrossRefGoogle Scholar
  46. El Mansari M, Guiard BP, Chernoloz O, Ghanbari R, Katz N, Blier P (2010) Relevance of norepinephrine–dopamine interactions in the treatment of major depressive disorder. CNS Neurosci Ther 16:e1–17PubMedCrossRefGoogle Scholar
  47. Ellenbroek BA, Derks N, Park HJ (2005) Early maternal deprivation retards neurodevelopment in Wistar rats. Stress 8:247–257PubMedCrossRefGoogle Scholar
  48. Espejo EP, Hammen CL, Connolly NP, Brennan PA, Najman JM, Bor W (2007) Stress sensitization and adolescent depressive severity as a function of childhood adversity: a link to anxiety disorders. J Abnorm Child Psychol 35:287–299PubMedCrossRefGoogle Scholar
  49. Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW (2008) Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci 363:3125–3135PubMedCrossRefGoogle Scholar
  50. Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489PubMedCrossRefGoogle Scholar
  51. Fahlke C, Engel JA, Eriksson CJ, Hard E, Soderpalm B (1994) Involvement of corticosterone in the modulation of ethanol consumption in the rat. Alcohol 11:195–202PubMedCrossRefGoogle Scholar
  52. Faraone SV, Doyle AE, Mick E, Biederman J (2001) Meta-analysis of the association between the 7-repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder. Am J Psychiatry 158:1052–1057PubMedCrossRefGoogle Scholar
  53. Felitti VJ, Anda RF, Nordenberg D, Williamson DF, Spitz AM, Edwards V, Koss MP, Marks JS (1998) Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am J Prev Med 14:245–258PubMedCrossRefGoogle Scholar
  54. Ferguson SA, Holson RR (1999) Neonatal dexamethasone on day 7 causes mild hyperactivity and cerebellar stunting. Neurotoxicol Teratol 21:71–76PubMedCrossRefGoogle Scholar
  55. French NP, Hagan R, Evans SF, Godfrey M, Newnham JP (1999) Repeated antenatal corticosteroids: size at birth and subsequent development. Am J Obstet Gynecol 180:114–121PubMedCrossRefGoogle Scholar
  56. Fride E, Weinstock M (1988) Prenatal stress increases anxiety related behavior and alters cerebral lateralization of dopamine activity. Life Sci 42:1059–1065PubMedCrossRefGoogle Scholar
  57. Fujioka A, Fujioka T, Ishida Y, Maekawa T, Nakamura S (2006) Differential effects of prenatal stress on the morphological maturation of hippocampal neurons. Neuroscience 141:907–915PubMedCrossRefGoogle Scholar
  58. Genro JP, Kieling C, Rohde LA, Hutz MH (2010) Attention-deficit/hyperactivity disorder and the dopaminergic hypotheses. Expert Rev Neurother 10:587–601PubMedCrossRefGoogle Scholar
  59. German DC, Manaye KF (1993) Midbrain dopaminergic neurons (nuclei A8, A9, and A10): three-dimensional reconstruction in the rat. J Comp Neurol 331:297–309PubMedCrossRefGoogle Scholar
  60. Glick SD, Cox RS, Crane AM (1975) Changes in morphine self-administration and morphine dependence after lesions of the caudate nucleus in rats. Psychopharmacologia 41:219–224PubMedCrossRefGoogle Scholar
  61. Goeders NE, Guerin GF (1994) Non-contingent electric footshock facilitates the acquisition of intravenous cocaine self-administration in rats. Psychopharmacology 114:63–70PubMedCrossRefGoogle Scholar
  62. Gutman DA, Nemeroff CB (2003) Persistent central nervous system effects of an adverse early environment: clinical and preclinical studies. Physiol Behav 79:471–478PubMedCrossRefGoogle Scholar
  63. Hall FS, Wilkinson LS, Humby T, Robbins TW (1999) Maternal deprivation of neonatal rats produces enduring changes in dopamine function. Synapse 32:37–43PubMedCrossRefGoogle Scholar
  64. Heim C, Nemeroff CB (2001) The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 49:1023–1039PubMedCrossRefGoogle Scholar
  65. Heim C, Nemeroff CB (2002) Neurobiology of early life stress: clinical studies. Semin Clin Neuropsychiatry 7:147–159PubMedCrossRefGoogle Scholar
  66. Heim C, Newport DJ, Heit S, Graham YP, Wilcox M, Bonsall R, Miller AH, Nemeroff CB (2000) Pituitary–adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. JAMA 284:592–597PubMedCrossRefGoogle Scholar
  67. Heim C, Newport DJ, Bonsall R, Miller AH, Nemeroff CB (2001) Altered pituitary–adrenal axis responses to provocative challenge tests in adult survivors of childhood abuse. Am J Psychiatry 158:575–581PubMedCrossRefGoogle Scholar
  68. Heim C, Newport DJ, Mletzko T, Miller AH, Nemeroff CB (2008) The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinology 33:693–710PubMedCrossRefGoogle Scholar
  69. Henry C, Guegant G, Cador M, Arnauld E, Arsaut J, Le Moal M, Demotes-Mainard J (1995) Prenatal stress in rats facilitates amphetamine-induced sensitization and induces long-lasting changes in dopamine receptors in the nucleus accumbens. Brain Res 685:179–186PubMedCrossRefGoogle Scholar
  70. Holsboer F (2001) Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affect Disord 62:77–91PubMedCrossRefGoogle Scholar
  71. Hosak L (2007) Role of the COMT gene Val158Met polymorphism in mental disorders: a review. Eur Psychiatry 22:276–281PubMedCrossRefGoogle Scholar
  72. Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 35:549–562PubMedCrossRefGoogle Scholar
  73. Huang W, Ma JZ, Payne TJ, Beuten J, Dupont RT, Li MD (2008) Significant association of DRD1 with nicotine dependence. Hum Genet 123:133–140PubMedCrossRefGoogle Scholar
  74. Huizink AC, Ferdinand RF, Ormel J, Verhulst FC (2006) Hypothalamic–pituitary–adrenal axis activity and early onset of cannabis use. Addiction 101:1581–1588PubMedCrossRefGoogle Scholar
  75. Huot RL, Thrivikraman KV, Meaney MJ, Plotsky PM (2001) Development of adult ethanol preference and anxiety as a consequence of neonatal maternal separation in Long Evans rats and reversal with antidepressant treatment. Psychopharmacology 158:366–373PubMedCrossRefGoogle Scholar
  76. Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ (2000) Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J Neurosci 20:7489–7495PubMedGoogle Scholar
  77. Kalivas PW, Duffy P (1995) Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress. Brain Res 675:325–328PubMedCrossRefGoogle Scholar
  78. Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Brain Res Rev 16:223–244PubMedCrossRefGoogle Scholar
  79. Kapur S, Mann JJ (1992) Role of the dopaminergic system in depression. Biol Psychiatry 32:1–17PubMedCrossRefGoogle Scholar
  80. Kawamura T, Chen J, Takahashi T, Ichitani Y, Nakahara D (2006) Prenatal stress suppresses cell proliferation in the early developing brain. NeuroReport 17:1515–1518PubMedCrossRefGoogle Scholar
  81. Kawano H, Ohyama K, Kawamura K, Nagatsu I (1995) Migration of dopaminergic neurons in the embryonic mesencephalon of mice. Brain Res Dev Brain Res 86:101–113PubMedCrossRefGoogle Scholar
  82. Kendler KS, Kuhn JW, Prescott CA (2004) Childhood sexual abuse, stressful life events and risk for major depression in women. Psychol Med 34:1475–1482PubMedCrossRefGoogle Scholar
  83. Kikusui T, Faccidomo S, Miczek KA (2005) Repeated maternal separation: differences in cocaine-induced behavioral sensitization in adult male and female mice. Psychopharmacology 178:202–210PubMedCrossRefGoogle Scholar
  84. Kim-Cohen J, Caspi A, Taylor A, Williams B, Newcombe R, Craig IW, Moffitt TE (2006) MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: new evidence and a meta-analysis. Mol Psychiatry 11:903–913PubMedCrossRefGoogle Scholar
  85. Kippin TE, Szumlinski KK, Kapasova Z, Rezner B, See RE (2008) Prenatal stress enhances responsiveness to cocaine. Neuropsychopharmacology 33:769–782PubMedCrossRefGoogle Scholar
  86. Ladd CO, Huot RL, Thrivikraman KV, Nemeroff CB, Meaney MJ, Plotsky PM (2000) Long-term behavioral and neuroendocrine adaptations to adverse early experience. Prog Brain Res 122:81–103PubMedCrossRefGoogle Scholar
  87. Leao P, Sousa JC, Oliveira M, Silva R, Almeida OF, Sousa N (2007) Programming effects of antenatal dexamethasone in the developing mesolimbic pathways. Synapse 61:40–49PubMedCrossRefGoogle Scholar
  88. Levine S (1957) Infantile experience and resistance to physiological stress. Science 126:405PubMedCrossRefGoogle Scholar
  89. Levine S (1967) Maternal and environmental influences on the adrenocortical response to stress in weanling rats. Science 156:258–260PubMedCrossRefGoogle Scholar
  90. Li Y, Robinson TE, Bhatnagar S (2003) Effects of maternal separation on behavioural sensitization produced by repeated cocaine administration in adulthood. Brain Res 960:42–47PubMedCrossRefGoogle Scholar
  91. Lindley SE, Bengoechea TG, Schatzberg AF, Wong DL (1999) Glucocorticoid effects on mesotelencephalic dopamine neurotransmission. Neuropsychopharmacology 21:399–407PubMedCrossRefGoogle Scholar
  92. Lindley SE, Bengoechea TG, Wong DL, Schatzberg AF (2002) Mesotelencephalic dopamine neurochemical responses to glucocorticoid administration and adrenalectomy in Fischer 344 and Lewis rats. Brain Res 958:414–422PubMedCrossRefGoogle Scholar
  93. Linseman MA (1976) Effects of lesions of the caudate nucleus on morphine dependence in the rat. Pharmacol Biochem Behav 5:465–472PubMedCrossRefGoogle Scholar
  94. Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, Hof PR, Morrison JH, McEwen BS (2006) Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci 26:7870–7874PubMedCrossRefGoogle Scholar
  95. Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A, Sharma S, Pearson D, Plotsky PM, Meaney MJ (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic–pituitary–adrenal responses to stress. Science 277:1659–1662PubMedCrossRefGoogle Scholar
  96. Luscher C, Nicoll RA, Malenka RC, Muller D (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci 3:545–550PubMedCrossRefGoogle Scholar
  97. MacArthur BA, Howie RN, Dezoete JA, Elkins J (1982) School progress and cognitive development of 6-year-old children whose mothers were treated antenatally with betamethasone. Pediatrics 70:99–105PubMedGoogle Scholar
  98. Macri S, Granstrem O, Shumilina M, Gomes A, dos Santos FJ, Berry A, Saso L, Laviola G (2009) Resilience and vulnerability are dose-dependently related to neonatal stressors in mice. Horm Behav 56:391–398PubMedCrossRefGoogle Scholar
  99. Makino S, Smith MA, Gold PW (2002) Regulatory role of glucocorticoids and glucocorticoid receptor mRNA levels on tyrosine hydroxylase gene expression in the locus coeruleus during repeated immobilization stress. Brain Res 943:216–223PubMedCrossRefGoogle Scholar
  100. Malaspina D, Corcoran C, Kleinhaus KR, Perrin MC, Fennig S, Nahon D, Friedlander Y, Harlap S (2008) Acute maternal stress in pregnancy and schizophrenia in offspring: a cohort prospective study. BMC Psychiatry 8:71PubMedCrossRefGoogle Scholar
  101. Maricle RA, Nutt JG, Carter JH (1995) Mood and anxiety fluctuation in Parkinson’s disease associated with levodopa infusion: preliminary findings. Mov Disord 10:329–332PubMedCrossRefGoogle Scholar
  102. Marinelli M, Piazza PV (2002) Interaction between glucocorticoid hormones, stress and psychostimulant drugs. Eur J Neurosci 16:387–394PubMedCrossRefGoogle Scholar
  103. Marinelli M, Piazza PV, Deroche V, Maccari S, Le Moal M, Simon H (1994) Corticosterone circadian secretion differentially facilitates dopamine-mediated psychomotor effect of cocaine and morphine. J Neurosci 14:2724–2731PubMedGoogle Scholar
  104. Marinelli M, Rouge-Pont F, De Jesus-Oliveira C, Le Moal M, Piazza PV (1997a) Acute blockade of corticosterone secretion decreases the psychomotor stimulant effects of cocaine. Neuropsychopharmacology 16:156–161PubMedCrossRefGoogle Scholar
  105. Marinelli M, Rouge-Pont F, Deroche V, Barrot M, De Jesus-Oliveira C, Le Moal M, Piazza PV (1997b) Glucocorticoids and behavioral effects of psychostimulants. I: locomotor response to cocaine depends on basal levels of glucocorticoids. J Pharmacol Exp Ther 281:1392–1400PubMedGoogle Scholar
  106. Markey KA, Towle AC, Sze PY (1982) Glucocorticoid influence on tyrosine hydroxylase activity in mouse locus coeruleus during postnatal development. Endocrinology 111:1519–1523PubMedCrossRefGoogle Scholar
  107. Martinez-Tellez RI, Hernandez-Torres E, Gamboa C, Flores G (2009) Prenatal stress alters spine density and dendritic length of nucleus accumbens and hippocampus neurons in rat offspring. Synapse 63:794–804PubMedCrossRefGoogle Scholar
  108. McArthur S, McHale E, Dalley JW, Buckingham JC, Gillies GE (2005) Altered mesencephalic dopaminergic populations in adulthood as a consequence of brief perinatal glucocorticoid exposure. J Neuroendocrinol 17:475–482PubMedCrossRefGoogle Scholar
  109. McCauley J, Kern DE, Kolodner K, Dill L, Schroeder AF, DeChant HK, Ryden J, Derogatis LR, Bass EB (1997) Clinical characteristics of women with a history of childhood abuse: unhealed wounds. JAMA 277:1362–1368PubMedCrossRefGoogle Scholar
  110. McFarlane A, Clark CR, Bryant RA, Williams LM, Niaura R, Paul RH, Hitsman BL, Stroud L, Alexander DM, Gordon E (2005) The impact of early life stress on psychophysiological, personality and behavioral measures in 740 non-clinical subjects. J Integr Neurosci 4:27–40PubMedCrossRefGoogle Scholar
  111. McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B, Szyf M, Turecki G, Meaney MJ (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12:342–348PubMedCrossRefGoogle Scholar
  112. Meaney MJ, Brake W, Gratton A (2002) Environmental regulation of the development of mesolimbic dopamine systems: a neurobiological mechanism for vulnerability to drug abuse? Psychoneuroendocrinology 27:127–138PubMedCrossRefGoogle Scholar
  113. Melis M, Spiga S, Diana M (2005) The dopamine hypothesis of drug addiction: hypodopaminergic state. Int Rev Neurobiol 63:101–154PubMedCrossRefGoogle Scholar
  114. Mendels J, Frazer A, Fitzgerald RG, Ramsey TA, Stokes JW (1972) Biogenic amine metabolites in cerebrospinal fluid of depressed and manic patients. Science 175:1380–1382PubMedCrossRefGoogle Scholar
  115. Mesquita AR, Pego JM, Summavielle T, Maciel P, Almeida OF, Sousa N (2007) Neurodevelopment milestone abnormalities in rats exposed to stress in early life. Neuroscience 147:1022–1033PubMedCrossRefGoogle Scholar
  116. Michelsen KA, van den Hove DL, Schmitz C, Segers O, Prickaerts J, Steinbusch HW (2007) Prenatal stress and subsequent exposure to chronic mild stress influence dendritic spine density and morphology in the rat medial prefrontal cortex. BMC Neurosci 8:107PubMedCrossRefGoogle Scholar
  117. Moffett MC, Harley J, Francis D, Sanghani SP, Davis WI, Kuhar MJ (2006) Maternal separation and handling affects cocaine self-administration in both the treated pups as adults and the dams. J Pharmacol Exp Ther 317:1210–1218PubMedCrossRefGoogle Scholar
  118. Moffett MC, Vicentic A, Kozel M, Plotsky P, Francis DD, Kuhar MJ (2007) Maternal separation alters drug intake patterns in adulthood in rats. Biochem Pharmacol 73:321–330PubMedCrossRefGoogle Scholar
  119. Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmuhl Y, Fischer D, Holsboer F, Wotjak CT, Almeida OF, Spengler D (2009) Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12:1559–1566PubMedCrossRefGoogle Scholar
  120. Murmu MS, Salomon S, Biala Y, Weinstock M, Braun K, Bock J (2006) Changes of spine density and dendritic complexity in the prefrontal cortex in offspring of mothers exposed to stress during pregnancy. Eur J Neurosci 24:1477–1487PubMedCrossRefGoogle Scholar
  121. Murphy BP, Inder TE, Huppi PS, Warfield S, Zientara GP, Kikinis R, Jolesz FA, Volpe JJ (2001) Impaired cerebral cortical gray matter growth after treatment with dexamethasone for neonatal chronic lung disease. Pediatrics 107:217–221PubMedCrossRefGoogle Scholar
  122. Murray RM, Fearon P (1999) The developmental ‘risk factor’ model of schizophrenia. J Psychiatr Res 33:497–499PubMedCrossRefGoogle Scholar
  123. Murthy VN, Schikorski T, Stevens CF, Zhu Y (2001) Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32:673–682PubMedCrossRefGoogle Scholar
  124. Nieoullon A, Coquerel A (2003) Dopamine: a key regulator to adapt action, emotion, motivation and cognition. Curr Opin Neurol 16(Suppl 2):S3–9PubMedCrossRefGoogle Scholar
  125. Noble EP (2000) Addiction and its reward process through polymorphisms of the D2 dopamine receptor gene: a review. Eur Psychiatry 15:79–89PubMedCrossRefGoogle Scholar
  126. Oades RD, Sadile AG, Sagvolden T, Viggiano D, Zuddas A, Devoto P, Aase H, Johansen EB, Ruocco LA, Russell VA (2005) The control of responsiveness in ADHD by catecholamines: evidence for dopaminergic, noradrenergic and interactive roles. Dev Sci 8:122–131PubMedCrossRefGoogle Scholar
  127. Oliveira M, Bessa JM, Mesquita A, Tavares H, Carvalho A, Silva R, Pego JM, Cerqueira JJ, Palha JA, Almeida OF et al (2006) Induction of a hyperanxious state by antenatal dexamethasone: a case for less detrimental natural corticosteroids. Biol Psychiatry 59:844–852PubMedCrossRefGoogle Scholar
  128. Oo TF, Burke RE (1997) The time course of developmental cell death in phenotypically defined dopaminergic neurons of the substantia nigra. Brain Res Dev Brain Res 98:191–196PubMedCrossRefGoogle Scholar
  129. Ortiz J, Fitzgerald LW, Charlton M, Lane S, Trevisan L, Guitart X, Shoemaker W, Duman RS, Nestler EJ (1995) Biochemical actions of chronic ethanol exposure in the mesolimbic dopamine system. Synapse 4:289–298Google Scholar
  130. Ortiz J, Fitzgerald LW, Lane S, Terwilliger R, Nestler EJ (1996) Biochemical adaptations in the mesolimbic dopamine system in response to repeated stress. Neuropsychopharmacology 14:443–452PubMedCrossRefGoogle Scholar
  131. Otten U, Thoenen H (1975) Circadian rhythm of tyrosine hydroxylase induction by short-term cold stress: modulatory action of glucocorticoids in newborn and adult rats. Proc Natl Acad Sci USA 72:1415–1419PubMedCrossRefGoogle Scholar
  132. Pantelis C, Yucel M, Wood SJ, McGorry PD, Velakoulis D (2003) Early and late neurodevelopmental disturbances in schizophrenia and their functional consequences. Aust N Z J Psychiatry 37:399–406PubMedCrossRefGoogle Scholar
  133. Papakostas GI (2006) Dopaminergic-based pharmacotherapies for depression. Eur Neuropsychopharmacol 16:391–402PubMedCrossRefGoogle Scholar
  134. Parsons LH, Smith AD, Justice JB Jr (1991) Basal extracellular dopamine is decreased in the rat nucleus accumbens during abstinence from chronic cocaine. Synapse 9:60–65PubMedCrossRefGoogle Scholar
  135. Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L et al (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328:753–756PubMedCrossRefGoogle Scholar
  136. Perroud N, Jaussent I, Guillaume S, Bellivier F, Baud P, Jollant F, Leboyer M, Lewis CM, Malafosse A, Courtet P (2010) COMT but not serotonin-related genes modulates the influence of childhood abuse on anger traits. Genes Brain Behav 9:193–202PubMedCrossRefGoogle Scholar
  137. Piazza PV, Deroche V, Deminiere JM, Maccari S, Le Moal M, Simon H (1993) Corticosterone in the range of stress-induced levels possesses reinforcing properties: implications for sensation-seeking behaviors. Proc Natl Acad Sci USA 90:11738–11742PubMedCrossRefGoogle Scholar
  138. Piazza PV, Le Moal ML (1996) Pathophysiological basis of vulnerability to drug abuse: role of an interaction between stress, glucocorticoids, and dopaminergic neurons. Annu Rev Pharmacol Toxicol 36:359–378PubMedCrossRefGoogle Scholar
  139. Piazza PV, Maccari S, Deminiere JM, Le Moal M, Mormede P, Simon H (1991) Corticosterone levels determine individual vulnerability to amphetamine self-administration. Proc Natl Acad Sci USA 88:2088–2092PubMedCrossRefGoogle Scholar
  140. Pienaar IS, Kellaway LA, Russell VA, Smith AD, Stein DJ, Zigmond MJ, Daniels WM (2008) Maternal separation exaggerates the toxic effects of 6-hydroxydopamine in rats: implications for neurodegenerative disorders. Stress 11:448–456PubMedCrossRefGoogle Scholar
  141. Ploj K, Roman E, Nylander I (2003) Long-term effects of maternal separation on ethanol intake and brain opioid and dopamine receptors in male Wistar rats. Neuroscience 121:787–799PubMedCrossRefGoogle Scholar
  142. Porrino LJ, Lyons D, Smith HR, Daunais JB, Nader MA (2004) Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J Neurosci 24:3554–3562PubMedCrossRefGoogle Scholar
  143. Prado-Alcala R, Wise RA (1984) Brain stimulation reward and dopamine terminal fields. I. Caudate-putamen, nucleus accumbens and amygdala. Brain Res 297:265–273PubMedCrossRefGoogle Scholar
  144. Prakash N, Wurst W (2006) Development of dopaminergic neurons in the mammalian brain. Cell Mol Life Sci 63:187–206PubMedCrossRefGoogle Scholar
  145. Prendergast MA, Little HJ (2007) Adolescence, glucocorticoids and alcohol. Pharmacol Biochem Behav 86:234–245PubMedCrossRefGoogle Scholar
  146. Pruessner JC, Champagne F, Meaney MJ, Dagher A (2004) Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: a positron emission tomography study using [11C]raclopride. J Neurosci 24:2825–2831PubMedCrossRefGoogle Scholar
  147. Quinlan MG, Sharf R, Lee DY, Wise RA, Ranaldi R (2004) Blockade of substantia nigra dopamine D1 receptors reduces intravenous cocaine reward in rats. Psychopharmacology 175:53–59PubMedCrossRefGoogle Scholar
  148. Raison CL, Miller AH (2003) When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatry 160:1554–1565PubMedCrossRefGoogle Scholar
  149. Rayburn WF, Christensen HD, Gonzalez CL (1997) A placebo-controlled comparison between betamethasone and dexamethasone for fetal maturation: differences in neurobehavioral development of mice offspring. Am J Obstet Gynecol 176:842–850. discussion 850–841PubMedCrossRefGoogle Scholar
  150. Rinne T, de Kloet ER, Wouters L, Goekoop JG, DeRijk RH, van den Brink W (2002) Hyperresponsiveness of hypothalamic-pituitary-adrenal axis to combined dexamethasone/corticotropin-releasing hormone challenge in female borderline personality disorder subjects with a history of sustained childhood abuse. Biol Psychiatry 52:1102–1112PubMedCrossRefGoogle Scholar
  151. Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396:157–198PubMedCrossRefGoogle Scholar
  152. Robinson TE, Kolb B (1999) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur J Neurosci 11:1598–1604PubMedCrossRefGoogle Scholar
  153. Robinson TE, Gorny G, Mitton E, Kolb B (2001) Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse 39:257–266PubMedCrossRefGoogle Scholar
  154. Rouge-Pont F, Deroche V, Le Moal M, Piazza PV (1998) Individual differences in stress-induced dopamine release in the nucleus accumbens are influenced by corticosterone. Eur J Neurosci 10:3903–3907PubMedCrossRefGoogle Scholar
  155. Rowe DC, Stever C, Giedinghagen LN, Gard JM, Cleveland HH, Terris ST, Mohr JH, Sherman S, Abramowitz A, Waldman ID (1998) Dopamine DRD4 receptor polymorphism and attention deficit hyperactivity disorder. Mol Psychiatry 3:419–426PubMedCrossRefGoogle Scholar
  156. Russell V, de Villiers A, Sagvolden T, Lamm M, Taljaard J (1995) Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of attention-deficit hyperactivity disorder—the spontaneously hypertensive rat. Brain Res 676:343–351PubMedCrossRefGoogle Scholar
  157. Saal D, Dong Y, Bonci A, Malenka RC (2003) Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37:577–582PubMedCrossRefGoogle Scholar
  158. Savitz J, van der Merwe L, Newman TK, Stein DJ, Ramesar R (2010) Catechol-O-methyltransferase genotype and childhood trauma may interact to impact schizotypal personality traits. Behav Genet 40:415–423PubMedCrossRefGoogle Scholar
  159. Schneider ML, Clarke AS, Kraemer GW, Roughton EC, Lubach GR, Rimm-Kaufman S, Schmidt D, Ebert M (1998) Prenatal stress alters brain biogenic amine levels in primates. Dev Psychopathol 10:427–440PubMedCrossRefGoogle Scholar
  160. Secoli SR, Teixeira NA (1998) Chronic prenatal stress affects development and behavioral depression in rats. Stress 2:273–280PubMedCrossRefGoogle Scholar
  161. Seidel K, Helmeke C, Poeggel G, Braun K (2008) Repeated neonatal separation stress alters the composition of neurochemically characterized interneuron subpopulations in the rodent dentate gyrus and basolateral amygdala. Dev Neurobiol 68:1137–1152PubMedCrossRefGoogle Scholar
  162. Shaw KM, Lees AJ, Stern GM (1980) The impact of treatment with levodopa on Parkinson’s disease. Q J Med 49:283–293PubMedGoogle Scholar
  163. Silvagni A, Barros VG, Mura C, Antonelli MC, Carboni E (2008) Prenatal restraint stress differentially modifies basal and stimulated dopamine and noradrenaline release in the nucleus accumbens shell: an ‘in vivo’ microdialysis study in adolescent and young adult rats. Eur J Neurosci 28:744–758PubMedCrossRefGoogle Scholar
  164. Sinha R (2001) How does stress increase risk of drug abuse and relapse? Psychopharmacology 158:343–359PubMedCrossRefGoogle Scholar
  165. Sinha R, Lacadie C, Skudlarski P, Fulbright RK, Rounsaville BJ, Kosten TR, Wexler BE (2005) Neural activity associated with stress-induced cocaine craving: a functional magnetic resonance imaging study. Psychopharmacology 183:171–180PubMedCrossRefGoogle Scholar
  166. Sorg BA, Kalivas PW (1991) Effects of cocaine and footshock stress on extracellular dopamine levels in the ventral striatum. Brain Res 559:29–36PubMedCrossRefGoogle Scholar
  167. Sousa N, Lukoyanov NV, Madeira MD, Almeida OF, Paula-Barbosa MM (2000) Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 97:253–266PubMedCrossRefGoogle Scholar
  168. Stewart J, Badiani A (1993) Tolerance and sensitization to the behavioral effects of drugs. Behav Pharmacol 4:289–312PubMedGoogle Scholar
  169. Sullivan RM, Brake WG (2003) What the rodent prefrontal cortex can teach us about attention-deficit/hyperactivity disorder: the critical role of early developmental events on prefrontal function. Behav Brain Res 146:43–55PubMedCrossRefGoogle Scholar
  170. Sullivan RM, Dufresne MM (2006) Mesocortical dopamine and HPA axis regulation: role of laterality and early environment. Brain Res 1076:49–59PubMedCrossRefGoogle Scholar
  171. Suto N, Vezina P, Wise RA (2004) Electrolytic lesions of the dorsal, central and ventral striatum differentially affect the maintenance of cocaine and morphine self-administration. Abstr Soc Neurosci 576:7Google Scholar
  172. Swanson JM, Kinsbourne M, Nigg J, Lanphear B, Stefanatos GA, Volkow N, Taylor E, Casey BJ, Castellanos FX, Wadhwa PD (2007) Etiologic subtypes of attention-deficit/hyperactivity disorder: brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. Neuropsychol Rev 17:39–59PubMedCrossRefGoogle Scholar
  173. Takahashi LK, Turner JG, Kalin NH (1992) Prenatal stress alters brain catecholaminergic activity and potentiates stress-induced behavior in adult rats. Brain Res 574:131–137PubMedCrossRefGoogle Scholar
  174. Takahashi H, Takada Y, Nagai N, Urano T, Takada A (1998) Effects of nicotine and footshock stress on dopamine release in the striatum and nucleus accumbens. Brain Res Bull 45:157–162PubMedCrossRefGoogle Scholar
  175. Tarullo AR, Gunnar MR (2006) Child maltreatment and the developing HPA axis. Horm Behav 50:632–639PubMedCrossRefGoogle Scholar
  176. Taylor JR, Robbins TW (1986) 6-Hydroxydopamine lesions of the nucleus accumbens, but not of the caudate nucleus, attenuate enhanced responding with reward-related stimuli produced by intra-accumbens d-amphetamine. Psychopharmacology 90:390–397PubMedCrossRefGoogle Scholar
  177. Teicher MH, Andersen SL, Polcari A, Anderson CM, Navalta CP, Kim DM (2003) The neurobiological consequences of early stress and childhood maltreatment. Neurosci Biobehav Rev 27:33–44PubMedCrossRefGoogle Scholar
  178. Thierry AM, Tassin JP, Blanc G, Glowinski J (1976) Selective activation of mesocortical DA system by stress. Nature 263:242–244PubMedCrossRefGoogle Scholar
  179. Toda M, Abi-Dargham A (2007) Dopamine hypothesis of schizophrenia: making sense of it all. Curr Psychiatry Rep 9:329–336PubMedCrossRefGoogle Scholar
  180. Valkama AM, Paakko EL, Vainionpaa LK, Lanning FP, Ilkko EA, Koivisto ME (2000) Magnetic resonance imaging at term and neuromotor outcome in preterm infants. Acta Paediatr 89:348–355PubMedCrossRefGoogle Scholar
  181. Vanderschuren LJ, Di Ciano P, Everitt BJ (2005) Involvement of the dorsal striatum in cue-controlled cocaine seeking. J Neurosci 25:8665–8670PubMedCrossRefGoogle Scholar
  182. Volkow ND, Fowler JS, Wang GJ, Swanson JM (2004) Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Mol Psychiatry 9:557–569PubMedCrossRefGoogle Scholar
  183. Voorn P, Kalsbeek A, Jorritsma-Byham B, Groenewegen HJ (1988) The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25:857–887PubMedCrossRefGoogle Scholar
  184. Waldman ID, Rowe DC, Abramowitz A, Kozel ST, Mohr JH, Sherman SL, Cleveland HH, Sanders ML, Gard JM, Stever C (1998) Association and linkage of the dopamine transporter gene and attention-deficit hyperactivity disorder in children: heterogeneity owing to diagnostic subtype and severity. Am J Hum Genet 63:1767–1776PubMedCrossRefGoogle Scholar
  185. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854PubMedCrossRefGoogle Scholar
  186. Weber K, Rockstroh B, Borgelt J, Awiszus B, Popov T, Hoffmann K, Schonauer K, Watzl H, Propster K (2008) Stress load during childhood affects psychopathology in psychiatric patients. BMC Psychiatry 8:63PubMedCrossRefGoogle Scholar
  187. Weiner SAFWJ (2002) Parkinson’s disease: diagnosis and clinical management. Demos, New YorkGoogle Scholar
  188. Weiss EL, Longhurst JG, Mazure CM (1999) Childhood sexual abuse as a risk factor for depression in women: psychosocial and neurobiological correlates. Am J Psychiatry 156:816–828PubMedGoogle Scholar
  189. Wise RA (1981) Intracranial self-stimulation: mapping against the lateral boundaries of the dopaminergic cells of the substantia nigra. Brain Res 213:190–194PubMedCrossRefGoogle Scholar
  190. Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494PubMedCrossRefGoogle Scholar
  191. Wise RA (2008) Dopamine and reward: the anhedonia hypothesis 30 years on. Neurotox Res 14:169–183PubMedCrossRefGoogle Scholar
  192. Wise RA (2009) Roles for nigrostriatal—not just mesocorticolimbic—dopamine in reward and addiction. Trends Neurosci 32:517–524PubMedCrossRefGoogle Scholar
  193. Wood PB (2008) Role of central dopamine in pain and analgesia. Expert Rev Neurother 8:781–797PubMedCrossRefGoogle Scholar
  194. Yehuda R, Giller EL, Southwick SM, Lowy MT, Mason JW (1991) Hypothalamic–pituitary–adrenal dysfunction in posttraumatic stress disorder. Biol Psychiatry 30:1031–1048PubMedCrossRefGoogle Scholar
  195. Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464–476PubMedCrossRefGoogle Scholar
  196. Young EA, Abelson JL, Curtis GC, Nesse RM (1997) Childhood adversity and vulnerability to mood and anxiety disorders. Depress Anxiety 5:66–72PubMedCrossRefGoogle Scholar
  197. Yu S, Patchev AV, Wu Y, Lu J, Holsboer F, Zhang JZ, Sousa N, Almeida OF (2010) Depletion of the neural precursor cell pool by glucocorticoids. Ann Neurol 67:21–30PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ana-João Rodrigues
    • 1
  • Pedro Leão
    • 1
  • Miguel Carvalho
    • 1
  • Osborne F. X. Almeida
    • 2
  • Nuno Sousa
    • 1
    Email author
  1. 1.Life and Health Sciences Research Institute (ICVS)School of Health Sciences, University of MinhoBragaPortugal
  2. 2.Max Planck Institute of PsychiatryMunichGermany

Personalised recommendations