Skip to main content
Log in

Contribution of limbic norepinephrine to cannabinoid-induced aversion

  • original investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The cannabinoid system has risen to the forefront in the development of novel treatments for a number of pathophysiological processes. However, significant side effects have been observed in clinical trials raising concerns regarding the potential clinical utility of cannabinoid-based agents. Understanding the neural circuits and neurochemical substrates impacted by cannabinoids will provide a better means of gaging their actions within the central nervous system that may contribute to the expression of unwanted side effects.

Objectives

In the present study, we investigated whether norepinephrine (NE) in the limbic forebrain is a critical determinant of cannabinoid receptor agonist-induced aversion and anxiety in rats.

Methods

An immunotoxin lesion approach was combined with behavioral analysis using a place conditioning paradigm and the elevated zero maze.

Results

Our results show that the non-selective CB1/CB2 receptor agonist, WIN 55,212-2, produced a significant place aversion in rats. Further, NE in the nucleus accumbens was critical for WIN 55,212-2-induced aversion but did not affect anxiety-like behaviors. Depletion of NE from the bed nucleus of the stria terminalis was ineffective in altering WIN 55,212-2-induced aversion and anxiety.

Conclusions

These results indicate that limbic, specifically accumbal, NE is required for cannabinoid-induced aversion but is not essential to cannabinoid-induced anxiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Acb:

Nucleus accumbens

ANOVARM:

Repeated measures ANOVA

BNST:

Bed nucleus of stria terminalis

BSA:

Bovine serum albumin

CB1r/CB2r:

Cannabinoid receptor type1/Cannabinoid receptor type2

CeA:

Central nucleus of amygdala

CNS:

Central nervous system

DBH:

Dopamine beta hydroxylase

DSAP:

Saporin conjugated with antibody against DBH

EZM:

Elevated zero maze

Ir:

Immunoreactivity

KOR:

Kappa opioid receptor

NE:

Norepinephrine

NTS:

Nucleus of the solitary tract

PB:

Phosphate buffer

PFC:

Prefrontal cortex

ROI:

Region of interest

SAP:

Saporin

TS:

Tris saline buffer

References

  • Anand A, Charney DS (2000) Norepinephrine dysfunction in depression. J Clin Psychiatry 61(Suppl 10):16–24

    PubMed  CAS  Google Scholar 

  • Arevalo C, de Miguel R, Hernandez-Tristan R (2001) Cannabinoid effects on anxiety-related behaviours and hypothalamic neurotransmitters. Pharmacol Biochem Behav 70:123–131

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Chiang C, Alexinsky T (1991) Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Prog Brain Res 88:501–520

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Delfs JM, Druhan J, Zhu Y (1999) The bed nucleus of the stria terminalis. A target site for noradrenergic actions in opiate withdrawal. Ann N Y Acad Sci 877:486–498

    Article  PubMed  CAS  Google Scholar 

  • Carlezon WA Jr, Thomas MJ (2009) Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology 56(Suppl 1):122–132. doi:10.1016/j.neuropharm.2008.06.075

    Article  PubMed  CAS  Google Scholar 

  • Carvalho AF, Mackie K, Van Bockstaele EJ (2010) Cannabinoid modulation of limbic forebrain noradrenergic circuitry. Eur J Neurosci. doi:10.1111/j.1460-9568.2009.07054.x

    PubMed  Google Scholar 

  • Childers SR, Breivogel CS (1998) Cannabis and endogenous cannabinoid systems. Drug Alcohol Depend 51:173–187

    Article  PubMed  CAS  Google Scholar 

  • Davis M (1998) Are different parts of the extended amygdala involved in fear versus anxiety? Biol Psychiatry 44:1239–1247

    Article  PubMed  CAS  Google Scholar 

  • Davis M (2006) Neural systems involved in fear and anxiety measured with fear-potentiated startle. Am Psychol 61:741–756. doi:10.1037/0003-066X.61.8.741

    Article  PubMed  Google Scholar 

  • Delfs JM, Zhu Y, Druhan JP, Aston-Jones GS (1998) Origin of noradrenergic afferents to the shell subregion of the nucleus accumbens: anterograde and retrograde tract-tracing studies in the rat. Brain Res 806:127–140

    Article  PubMed  CAS  Google Scholar 

  • Delfs JM, Zhu Y, Druhan JP, Aston-Jones G (2000) Noradrenaline in the ventral forebrain is critical for opiate withdrawal-induced aversion. Nature 403:430–434. doi:10.1038/35000212

    Article  PubMed  CAS  Google Scholar 

  • Delgado MR, Li J, Schiller D, Phelps EA (2008) The role of the striatum in aversive learning and aversive prediction errors. Philos Trans R Soc Lond B Biol Sci 363:3787–3800. doi:10.1098/rstb.2008.0161

    Article  PubMed  Google Scholar 

  • Fodor M, Pammer C, Gorcs T, Palkovits M (1994) Neuropeptides in the human dorsal vagal complex: an immunohistochemical study. J Chem Neuroanat 7:141–157

    Article  PubMed  CAS  Google Scholar 

  • Forray MI, Gysling K (2004) Role of noradrenergic projections to the bed nucleus of the stria terminalis in the regulation of the hypothalamic-pituitary-adrenal axis. Brain Res Brain Res Rev 47:145–160. doi:10.1016/j.brainresrev.2004.07.011

    Article  PubMed  CAS  Google Scholar 

  • Forray MI, Gysling K, Andres ME, Bustos G, Araneda S (2000) Medullary noradrenergic neurons projecting to the bed nucleus of the stria terminalis express mRNA for the NMDA-NR1 receptor. Brain Res Bull 52:163–169

    Article  PubMed  CAS  Google Scholar 

  • Ghozland S, Matthes HW, Simonin F, Filliol D, Kieffer BL, Maldonado R (2002) Motivational effects of cannabinoids are mediated by mu-opioid and kappa-opioid receptors. J Neurosci 22:1146–1154

    PubMed  CAS  Google Scholar 

  • Gracy KN, Dankiewicz LA, Koob GF (2001) Opiate withdrawal-induced fos immunoreactivity in the rat extended amygdala parallels the development of conditioned place aversion. Neuropsychopharmacology 24:152–160. doi:10.1016/S0893-133X(00)00186-X

    Article  PubMed  CAS  Google Scholar 

  • Heninger GR, Delgado PL, Charney DS (1996) The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry 29:2–11

    Article  PubMed  CAS  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    PubMed  CAS  Google Scholar 

  • Himmi T, Perrin J, El Ouazzani T, Orsini JC (1998) Neuronal responses to cannabinoid receptor ligands in the solitary tract nucleus. Eur J Pharmacol 359:49–54

    Article  PubMed  CAS  Google Scholar 

  • Jelsing J, Galzin AM, Guillot E, Pruniaux MP, Larsen PJ, Vrang N (2009) Localization and phenotypic characterization of brainstem neurons activated by rimonabant and WIN55, 212–2. Brain Res Bull 78:202–210. doi:10.1016/j.brainresbull.2008.10.014

    Article  PubMed  CAS  Google Scholar 

  • Kerfoot EC, Chattillion EA, Williams CL (2008) Functional interactions between the nucleus tractus solitarius (NTS) and nucleus accumbens shell in modulating memory for arousing experiences. Neurobiol Learn Mem 89:47–60. doi:10.1016/j.nlm.2007.09.005

    PubMed  Google Scholar 

  • Khachaturian H, Watson SJ, Lewis ME, Coy D, Goldstein A, Akil H (1982) Dynorphin immunocytochemistry in the rat central nervous system. Peptides 3:941–954

    Article  PubMed  CAS  Google Scholar 

  • Laorden ML, Castells MT, Milanes MV (2003) Effects of U-50488H and U-50488H withdrawal on c-fos expression in the rat paraventricular nucleus. Correlation with c-fos in brainstem catecholaminergic neurons. Br J Pharmacol 138:1544–1552. doi:10.1038/sj.bjp.0705179

    Article  PubMed  CAS  Google Scholar 

  • Levita L, Dalley JW, Robbins TW (2002) Nucleus accumbens dopamine and learned fear revisited: a review and some new findings. Behav Brain Res 137:115–127

    Article  PubMed  CAS  Google Scholar 

  • Mackie K (2005) Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol 168:299–325

    Article  PubMed  CAS  Google Scholar 

  • Mackie K (2008) Cannabinoid receptors: where they are and what they do. J Neuroendocrinol 20(Suppl 1):10–14. doi:10.1111/j.1365-2826.2008.01671.x

    Article  PubMed  CAS  Google Scholar 

  • Mallet PE, Beninger RJ (1998) Delta9-tetrahydrocannabinol, but not the endogenous cannabinoid receptor ligand anandamide, produces conditioned place avoidance. Life Sci 62:2431–2439

    Article  PubMed  CAS  Google Scholar 

  • Manzoni OJ, Bockaert J (2001) Cannabinoids inhibit GABAergic synaptic transmission in mice nucleus accumbens. Eur J Pharmacol 412:R3–R5

    Article  PubMed  CAS  Google Scholar 

  • Marco EM, Perez-Alvarez L, Borcel E, Rubio M, Guaza C, Ambrosio E, File SE, Viveros MP (2004) Involvement of 5-HT1A receptors in behavioural effects of the cannabinoid receptor agonist CP 55, 940 in male rats. Behav Pharmacol 15:21–27

    Article  PubMed  CAS  Google Scholar 

  • Matyas F, Yanovsky Y, Mackie K, Kelsch W, Misgeld U, Freund TF (2006) Subcellular localization of type 1 cannabinoid receptors in the rat basal ganglia. Neuroscience 137:337–361. doi:10.1016/j.neuroscience.2005.09.005

    Article  PubMed  CAS  Google Scholar 

  • McGregor IS, Issakidis CN, Prior G (1996) Aversive effects of the synthetic cannabinoid CP 55, 940 in rats. Pharmacol Biochem Behav 53:657–664

    Article  PubMed  CAS  Google Scholar 

  • Miranda MA, Ferry B, Ferreira G (2007) Basolateral amygdala noradrenergic activity is involved in the acquisition of conditioned odor aversion in the rat. Neurobiol Learn Mem 88:260–263. doi:10.1016/j.nlm.2007.04.008

    Article  PubMed  CAS  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  PubMed  CAS  Google Scholar 

  • Onaivi ES, Green MR, Martin BR (1990) Pharmacological characterization of cannabinoids in the elevated plus maze. J Pharmacol Exp Ther 253:1002–1009

    PubMed  CAS  Google Scholar 

  • Oropeza VC, Page ME, Van Bockstaele EJ (2005) Systemic administration of WIN 55, 212–2 increases norepinephrine release in the rat frontal cortex. Brain Res 1046:45–54. doi:10.1016/j.brainres.2005.03.036

    Article  PubMed  CAS  Google Scholar 

  • Oropeza VC, Mackie K, Van Bockstaele EJ (2007) Cannabinoid receptors are localized to noradrenergic axon terminals in the rat frontal cortex. Brain Res 1127:36–44. doi:10.1016/j.brainres.2006.09.110

    Article  PubMed  CAS  Google Scholar 

  • Pacher P, Batkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58:389–462. doi:10.1124/pr.58.3.2

    Article  PubMed  CAS  Google Scholar 

  • Page ME, Oropeza VC, Sparks SE, Qian Y, Menko AS, Van Bockstaele EJ (2007) Repeated cannabinoid administration increases indices of noradrenergic activity in rats. Pharmacol Biochem Behav 86:162–168. doi:10.1016/j.pbb.2006.12.020

    Article  PubMed  CAS  Google Scholar 

  • Pandolfo P, Vendruscolo LF, Sordi R, Takahashi RN (2009) Cannabinoid-induced conditioned place preference in the spontaneously hypertensive rat-an animal model of attention deficit hyperactivity disorder. Psychopharmacology (Berl) 205:319–326. doi:10.1007/s00213-009-1542-3

    Article  CAS  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  • Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4:873–884. doi:10.1038/nrn1247

    Article  PubMed  CAS  Google Scholar 

  • Reilly D, Didcott P, Swift W, Hall W (1998) Long-term cannabis use: characteristics of users in an Australian rural area. Addiction 93:837–846

    Article  PubMed  CAS  Google Scholar 

  • Ritter S, Bugarith K, Dinh TT (2001) Immunotoxic destruction of distinct catecholamine subgroups produces selective impairment of glucoregulatory responses and neuronal activation. J Comp Neurol 432:197–216

    Article  PubMed  CAS  Google Scholar 

  • Ritter S, Watts AG, Dinh TT, Sanchez-Watts G, Pedrow C (2003) Immunotoxin lesion of hypothalamically projecting norepinephrine and epinephrine neurons differentially affects circadian and stressor-stimulated corticosterone secretion. Endocrinology 144:1357–1367

    Article  PubMed  CAS  Google Scholar 

  • Robbe D, Alonso G, Duchamp F, Bockaert J, Manzoni OJ (2001) Localization and mechanisms of action of cannabinoid receptors at the glutamatergic synapses of the mouse nucleus accumbens. J Neurosci 21:109–116

    PubMed  CAS  Google Scholar 

  • Roder S, Ciriello J (1994) Collateral axonal projections to limbic structures from ventrolateral medullary A1 noradrenergic neurons. Brain Res 638:182–188

    Article  PubMed  CAS  Google Scholar 

  • Rutkowska M, Jamontt J, Gliniak H (2006) Effects of cannabinoids on the anxiety-like response in mice. Pharmacol Rep 58:200–206

    PubMed  CAS  Google Scholar 

  • Sanudo-Pena MC, Tsou K, Delay ER, Hohman AG, Force M, Walker JM (1997) Endogenous cannabinoids as an aversive or counter-rewarding system in the rat. Neurosci Lett 223:125–128

    Article  PubMed  CAS  Google Scholar 

  • Scavone JL, Mackie K, Van Bockstaele EJ (2010) Characterization of cannabinoid-1 receptors in the locus coeruleus: relationship with mu-opioid receptors. Brain Res 1312:18–31. doi:10.1016/j.brainres.2009.11.023

    Article  PubMed  CAS  Google Scholar 

  • Shepherd JK, Grewal SS, Fletcher A, Bill DJ, Dourish CT (1994) Behavioural and pharmacological characterisation of the elevated “zero-maze” as an animal model of anxiety. Psychopharmacology (Berl) 116:56–64

    Article  CAS  Google Scholar 

  • Steinberg BA, Cannon CP (2007) Cannabinoid-1 receptor blockade in cardiometabolic risk reduction: safety, tolerability, and therapeutic potential. Am J Cardiol 100:27P–32P. doi:10.1016/j.amjcard.2007.10.011

    Article  PubMed  CAS  Google Scholar 

  • Terenzi MG, Ingram CD (1995) A combined immunocytochemical and retrograde tracing study of noradrenergic connections between the caudal medulla and bed nuclei of the stria terminalis. Brain Res 672:289–297

    Article  PubMed  CAS  Google Scholar 

  • Van Bockstaele EJ, Sesack SR, Pickel VM (1994) Dynorphin-immunoreactive terminals in the rat nucleus accumbens: cellular sites for modulation of target neurons and interactions with catecholamine afferents. J Comp Neurol 341:1–15. doi:10.1002/cne.903410102

    Article  PubMed  Google Scholar 

  • Ventura R, Morrone C, Puglisi-Allegra S (2007) Prefrontal/accumbal catecholamine system determines motivational salience attribution to both reward- and aversion-related stimuli. Proc Natl Acad Sci USA 104:5181–5186. doi:10.1073/pnas.0610178104

    Article  PubMed  CAS  Google Scholar 

  • Viveros MP, Marco EM, File SE (2005) Endocannabinoid system and stress and anxiety responses. Pharmacol Biochem Behav 81:331–342. doi:10.1016/j.pbb.2005.01.029

    Article  PubMed  CAS  Google Scholar 

  • Williamson EM, Evans FJ (2000) Cannabinoids in clinical practice. Drugs 60:1303–1314

    Article  PubMed  CAS  Google Scholar 

  • Witkin JM, Tzavara ET, Nomikos GG (2005) A role for cannabinoid CB1 receptors in mood and anxiety disorders. Behav Pharmacol 16:315–331

    Article  PubMed  CAS  Google Scholar 

  • Wrenn CC, Picklo MJ, Lappi DA, Robertson D, Wiley RG (1996) Central noradrenergic lesioning using anti-DBH-saporin: anatomical findings. Brain Res 740:175–184

    Article  PubMed  CAS  Google Scholar 

  • Zimmer A, Valjent E, Konig M, Zimmer AM, Robledo P, Hahn H, Valverde O, Maldonado R (2001) Absence of delta -9-tetrahydrocannabinol dysphoric effects in dynorphin-deficient mice. J Neurosci 21:9499–9505

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This works was supported by PHS grant DA 020129. Ana Franky Carvalho was supported by the Portuguese Foundation for Science and Technology (SFRH/BD/33236/2007).

Disclosure

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Franky Carvalho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, A.F., Reyes, AR.S., Sterling, R.C. et al. Contribution of limbic norepinephrine to cannabinoid-induced aversion. Psychopharmacology 211, 479–491 (2010). https://doi.org/10.1007/s00213-010-1923-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1923-7

Keywords

Navigation